5 research outputs found

    An Evasion Attack against ML-based Phishing URL Detectors

    Full text link
    Background: Over the year, Machine Learning Phishing URL classification (MLPU) systems have gained tremendous popularity to detect phishing URLs proactively. Despite this vogue, the security vulnerabilities of MLPUs remain mostly unknown. Aim: To address this concern, we conduct a study to understand the test time security vulnerabilities of the state-of-the-art MLPU systems, aiming at providing guidelines for the future development of these systems. Method: In this paper, we propose an evasion attack framework against MLPU systems. To achieve this, we first develop an algorithm to generate adversarial phishing URLs. We then reproduce 41 MLPU systems and record their baseline performance. Finally, we simulate an evasion attack to evaluate these MLPU systems against our generated adversarial URLs. Results: In comparison to previous works, our attack is: (i) effective as it evades all the models with an average success rate of 66% and 85% for famous (such as Netflix, Google) and less popular phishing targets (e.g., Wish, JBHIFI, Officeworks) respectively; (ii) realistic as it requires only 23ms to produce a new adversarial URL variant that is available for registration with a median cost of only $11.99/year. We also found that popular online services such as Google SafeBrowsing and VirusTotal are unable to detect these URLs. (iii) We find that Adversarial training (successful defence against evasion attack) does not significantly improve the robustness of these systems as it decreases the success rate of our attack by only 6% on average for all the models. (iv) Further, we identify the security vulnerabilities of the considered MLPU systems. Our findings lead to promising directions for future research. Conclusion: Our study not only illustrate vulnerabilities in MLPU systems but also highlights implications for future study towards assessing and improving these systems.Comment: Draft for ACM TOP

    A pipeline and comparative study of 12 machine learning models for text classification

    Get PDF
    Text-based communication is highly favoured as a communication method, especially in business environments. As a result, it is often abused by sending malicious messages, e.g., spam emails, to deceive users into relaying personal information, including online accounts credentials or banking details. For this reason, many machine learning methods for text classification have been proposed and incorporated into the services of most email providers. However, optimising text classification algorithms and finding the right tradeoff on their aggressiveness is still a major research problem. We present an updated survey of 12 machine learning text classifiers applied to a public spam corpus. A new pipeline is proposed to optimise hyperparameter selection and improve the models' performance by applying specific methods (based on natural language processing) in the preprocessing stage. Our study aims to provide a new methodology to investigate and optimise the effect of different feature sizes and hyperparameters in machine learning classifiers that are widely used in text classification problems. The classifiers are tested and evaluated on different metrics including F-score (accuracy), precision, recall, and run time. By analysing all these aspects, we show how the proposed pipeline can be used to achieve a good accuracy towards spam filtering on the Enron dataset, a widely used public email corpus. Statistical tests and explainability techniques are applied to provide a robust analysis of the proposed pipeline and interpret the classification outcomes of the 12 machine learning models, also identifying words that drive the classification results. Our analysis shows that it is possible to identify an effective machine learning model to classify the Enron dataset with an F-score of 94%.Comment: This article has been accepted for publication in Expert Systems with Applications, April 2022. Published by Elsevier. All data, models, and code used in this work are available on GitHub at https://github.com/Angione-Lab/12-machine-learning-models-for-text-classificatio

    Commencement August 9, 2014.

    Get PDF
    The PDF for the August 9, 2014, Texas Tech University commencement exercises is 36 pages long
    corecore