9 research outputs found

    An Improved Upper Bound for the Ring Loading Problem

    Full text link
    The Ring Loading Problem emerged in the 1990s to model an important special case of telecommunication networks (SONET rings) which gained attention from practitioners and theorists alike. Given an undirected cycle on nn nodes together with non-negative demands between any pair of nodes, the Ring Loading Problem asks for an unsplittable routing of the demands such that the maximum cumulated demand on any edge is minimized. Let LL be the value of such a solution. In the relaxed version of the problem, each demand can be split into two parts where the first part is routed clockwise while the second part is routed counter-clockwise. Denote with L∗L^* the maximum load of a minimum split routing solution. In a landmark paper, Schrijver, Seymour and Winkler [SSW98] showed that L≤L∗+1.5DL \leq L^* + 1.5D, where DD is the maximum demand value. They also found (implicitly) an instance of the Ring Loading Problem with L=L∗+1.01DL = L^* + 1.01D. Recently, Skutella [Sku16] improved these bounds by showing that L≤L∗+1914DL \leq L^* + \frac{19}{14}D, and there exists an instance with L=L∗+1.1DL = L^* + 1.1D. We contribute to this line of research by showing that L≤L∗+1.3DL \leq L^* + 1.3D. We also take a first step towards lower and upper bounds for small instances

    Optimization in Telecommunication Networks

    Get PDF
    Network design and network synthesis have been the classical optimization problems intelecommunication for a long time. In the recent past, there have been many technologicaldevelopments such as digitization of information, optical networks, internet, and wirelessnetworks. These developments have led to a series of new optimization problems. Thismanuscript gives an overview of the developments in solving both classical and moderntelecom optimization problems.We start with a short historical overview of the technological developments. Then,the classical (still actual) network design and synthesis problems are described with anemphasis on the latest developments on modelling and solving them. Classical results suchas Menger’s disjoint paths theorem, and Ford-Fulkerson’s max-flow-min-cut theorem, butalso Gomory-Hu trees and the Okamura-Seymour cut-condition, will be related to themodels described. Finally, we describe recent optimization problems such as routing andwavelength assignment, and grooming in optical networks.operations research and management science;

    Exact Solution of the SONET Ring Loading Problem

    No full text
    In this paper we address the problem of planning the capacity of the local rings in Synchronous Optical NETworks (SONET). We present efficient lower and upper bound procedures and a branch and bound algorithm which is able to find the exact solution of large instances within short computing times

    Exact Solution of the SONET Ring Loading Problem

    No full text
    corecore