194,112 research outputs found

    Average Distance Queries through Weighted Samples in Graphs and Metric Spaces: High Scalability with Tight Statistical Guarantees

    Get PDF
    The average distance from a node to all other nodes in a graph, or from a query point in a metric space to a set of points, is a fundamental quantity in data analysis. The inverse of the average distance, known as the (classic) closeness centrality of a node, is a popular importance measure in the study of social networks. We develop novel structural insights on the sparsifiability of the distance relation via weighted sampling. Based on that, we present highly practical algorithms with strong statistical guarantees for fundamental problems. We show that the average distance (and hence the centrality) for all nodes in a graph can be estimated using O(ϵ2)O(\epsilon^{-2}) single-source distance computations. For a set VV of nn points in a metric space, we show that after preprocessing which uses O(n)O(n) distance computations we can compute a weighted sample SVS\subset V of size O(ϵ2)O(\epsilon^{-2}) such that the average distance from any query point vv to VV can be estimated from the distances from vv to SS. Finally, we show that for a set of points VV in a metric space, we can estimate the average pairwise distance using O(n+ϵ2)O(n+\epsilon^{-2}) distance computations. The estimate is based on a weighted sample of O(ϵ2)O(\epsilon^{-2}) pairs of points, which is computed using O(n)O(n) distance computations. Our estimates are unbiased with normalized mean square error (NRMSE) of at most ϵ\epsilon. Increasing the sample size by a O(logn)O(\log n) factor ensures that the probability that the relative error exceeds ϵ\epsilon is polynomially small.Comment: 21 pages, will appear in the Proceedings of RANDOM 201

    Perseus: Randomized Point-based Value Iteration for POMDPs

    Full text link
    Partially observable Markov decision processes (POMDPs) form an attractive and principled framework for agent planning under uncertainty. Point-based approximate techniques for POMDPs compute a policy based on a finite set of points collected in advance from the agents belief space. We present a randomized point-based value iteration algorithm called Perseus. The algorithm performs approximate value backup stages, ensuring that in each backup stage the value of each point in the belief set is improved; the key observation is that a single backup may improve the value of many belief points. Contrary to other point-based methods, Perseus backs up only a (randomly selected) subset of points in the belief set, sufficient for improving the value of each belief point in the set. We show how the same idea can be extended to dealing with continuous action spaces. Experimental results show the potential of Perseus in large scale POMDP problems
    corecore