800 research outputs found

    Balanced Truncation Model Reduction of a Nonlinear Cable-Mass PDE System with Interior Damping

    Full text link
    We consider model order reduction of a nonlinear cable-mass system modeled by a 1D wave equation with interior damping and dynamic boundary conditions. The system is driven by a time dependent forcing input to a linear mass-spring system at one boundary. The goal of the model reduction is to produce a low order model that produces an accurate approximation to the displacement and velocity of the mass in the nonlinear mass-spring system at the opposite boundary. We first prove that the linearized and nonlinear unforced systems are well-posed and exponentially stable under certain conditions on the damping parameters, and then consider a balanced truncation method to generate the reduced order model (ROM) of the nonlinear input-output system. Little is known about model reduction of nonlinear input-output systems, and so we present detailed numerical experiments concerning the performance of the nonlinear ROM. We find that the ROM is accurate for many different combinations of model parameters

    Coverage and Field Estimation on Bounded Domains by Diffusive Swarms

    Full text link
    In this paper, we consider stochastic coverage of bounded domains by a diffusing swarm of robots that take local measurements of an underlying scalar field. We introduce three control methodologies with diffusion, advection, and reaction as independent control inputs. We analyze the diffusion-based control strategy using standard operator semigroup-theoretic arguments. We show that the diffusion coefficient can be chosen to be dependent only on the robots' local measurements to ensure that the swarm density converges to a function proportional to the scalar field. The boundedness of the domain precludes the need to impose assumptions on decaying properties of the scalar field at infinity. Moreover, exponential convergence of the swarm density to the equilibrium follows from properties of the spectrum of the semigroup generator. In addition, we use the proposed coverage method to construct a time-inhomogenous diffusion process and apply the observability of the heat equation to reconstruct the scalar field over the entire domain from observations of the robots' random motion over a small subset of the domain. We verify our results through simulations of the coverage scenario on a 2D domain and the field estimation scenario on a 1D domain.Comment: To appear in the proceedings of the 55th IEEE Conference on Decision and Control (CDC 2016

    Application of system theory to power processing problems

    Get PDF
    The work in power processing is reported. Input-output models, and Lie groups in control theory are discussed along with the methods of analysis for time invariant electrical networks

    Feedback control of bilinear distributed parameter system by input-output linearization

    Get PDF
    International audienceIn this paper, a control law that enforces the tracking of a boundary controlled output for a bilinear distributed parameter system is developed in the framework of geometric control. The dynamic behavior of the system is described by two weakly coupled linear hyperbolic partial differential equations. The stability of the resulting closed-loop system is investigated based on eigenvalues of the spatial operator of a weakly coupled system of balance equations. It is shown that, under some reasonable assumptions, the stability condition is related to the choice of the tuning parameter of the control law. The performance of the developed control law is demonstrated, through numerical simulation, in the case of a co-current heat exchanger. The control objective is to control the outlet cold fluid temperature by manipulating its velocity. Both tracking and disturbance rejection problems are considered
    corecore