1,429 research outputs found

    Fast Mojette Transform for Discrete Tomography

    Full text link
    A new algorithm for reconstructing a two dimensional object from a set of one dimensional projected views is presented that is both computationally exact and experimentally practical. The algorithm has a computational complexity of O(n log2 n) with n = N^2 for an NxN image, is robust in the presence of noise and produces no artefacts in the reconstruction process, as is the case with conventional tomographic methods. The reconstruction process is approximation free because the object is assumed to be discrete and utilizes fully discrete Radon transforms. Noise in the projection data can be suppressed further by introducing redundancy in the reconstruction. The number of projections required for exact reconstruction and the response to noise can be controlled without comprising the digital nature of the algorithm. The digital projections are those of the Mojette Transform, a form of discrete linogram. A simple analytical mapping is developed that compacts these projections exactly into symmetric periodic slices within the Discrete Fourier Transform. A new digital angle set is constructed that allows the periodic slices to completely fill all of the objects Discrete Fourier space. Techniques are proposed to acquire these digital projections experimentally to enable fast and robust two dimensional reconstructions.Comment: 22 pages, 13 figures, Submitted to Elsevier Signal Processin

    The curvelet transform for image denoising

    Get PDF
    We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform and the curvelet transform. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A central tool is Fourier-domain computation of an approximate digital Radon transform. We introduce a very simple interpolation in the Fourier space which takes Cartesian samples and yields samples on a rectopolar grid, which is a pseudo-polar sampling set based on a concentric squares geometry. Despite the crudeness of our interpolation, the visual performance is surprisingly good. Our ridgelet transform applies to the Radon transform a special overcomplete wavelet pyramid whose wavelets have compact support in the frequency domain. Our curvelet transform uses our ridgelet transform as a component step, and implements curvelet subbands using a filter bank of a` trous wavelet filters. Our philosophy throughout is that transforms should be overcomplete, rather than critically sampled. We apply these digital transforms to the denoising of some standard images embedded in white noise. In the tests reported here, simple thresholding of the curvelet coefficients is very competitive with "state of the art" techniques based on wavelets, including thresholding of decimated or undecimated wavelet transforms and also including tree-based Bayesian posterior mean methods. Moreover, the curvelet reconstructions exhibit higher perceptual quality than wavelet-based reconstructions, offering visually sharper images and, in particular, higher quality recovery of edges and of faint linear and curvilinear features. Existing theory for curvelet and ridgelet transforms suggests that these new approaches can outperform wavelet methods in certain image reconstruction problems. The empirical results reported here are in encouraging agreement

    Recovering missing slices of the discrete fourier transform using ghosts

    Get PDF
    The discrete Fourier transform (DFT) underpins the solution to many inverse problems commonly possessing missing or unmeasured frequency information. This incomplete coverage of the Fourier space always produces systematic artifacts called Ghosts. In this paper, a fast and exact method for deconvolving cyclic artifacts caused by missing slices of the DFT using redundant image regions is presented. The slices discussed here originate from the exact partitioning of the Discrete Fourier Transform (DFT) space, under the projective Discrete Radon Transform, called the discrete Fourier slice theorem. The method has a computational complexity of O(n\log-{2}n) (for an n=N\times N image) and is constructed from a new cyclic theory of Ghosts. This theory is also shown to unify several aspects of work done on Ghosts over the past three decades. This paper concludes with an application to fast, exact, non-iterative image reconstruction from a highly asymmetric set of rational angle projections that give rise to sets of sparse slices within the DFT

    Fast Digital Convolutions using Bit-Shifts

    Full text link
    An exact, one-to-one transform is presented that not only allows digital circular convolutions, but is free from multiplications and quantisation errors for transform lengths of arbitrary powers of two. The transform is analogous to the Discrete Fourier Transform, with the canonical harmonics replaced by a set of cyclic integers computed using only bit-shifts and additions modulo a prime number. The prime number may be selected to occupy contemporary word sizes or to be very large for cryptographic or data hiding applications. The transform is an extension of the Rader Transforms via Carmichael's Theorem. These properties allow for exact convolutions that are impervious to numerical overflow and to utilise Fast Fourier Transform algorithms.Comment: 4 pages, 2 figures, submitted to IEEE Signal Processing Letter

    On random tomography with unobservable projection angles

    Get PDF
    We formulate and investigate a statistical inverse problem of a random tomographic nature, where a probability density function on R3\mathbb{R}^3 is to be recovered from observation of finitely many of its two-dimensional projections in random and unobservable directions. Such a problem is distinct from the classic problem of tomography where both the projections and the unit vectors normal to the projection plane are observable. The problem arises in single particle electron microscopy, a powerful method that biophysicists employ to learn the structure of biological macromolecules. Strictly speaking, the problem is unidentifiable and an appropriate reformulation is suggested hinging on ideas from Kendall's theory of shape. Within this setup, we demonstrate that a consistent solution to the problem may be derived, without attempting to estimate the unknown angles, if the density is assumed to admit a mixture representation.Comment: Published in at http://dx.doi.org/10.1214/08-AOS673 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore