607 research outputs found

    Solving Target Coverage Problem in Wireless Sensor Networks Using Iterative Heuristic Algorithms

    Get PDF
    Wireless Sensor Networks have proved to be very useful in monitoring environmental conditions of remote or inhospitable areas. One of the major diculty which a designer faces in devising such wireless sensor networks is the limited energy and computational resources available to sensor nodes of the networks. Thus, any application developed at any level of hierarchy must be designed keeping in mind its constraints. The rst work in establishing a sensor network is the deployment of sensor nodes .one solution in case of deployment of sensor nodes in an inhospitable area in which ground access is prohibited is to drop the sensor nodes from aircraft. Since the exact positioning of the sensor nodes on the ground cannot be guaranteed , one solution is to deploy a large number of nodes. Therefore, the number of nodes that are deployed ,with an aim to cover the area completely, is often higher than the required. Activating only those nodes that are necessary at any particular moment rather than all the sensor nodes can save energy. Hence, we divide the sensor nodes into sets such that each set is capable of monitoring all targets and activate those sets one after another. So the overall all lifetime of WSNs will be the sum of the lifetime of cover sets.This process will e ectively lead to increment in the overall lifetime of WSN. This work aims to maximize the lifetime of wireless sensor networks by grouping the sensor nodes into sets and activating the sets successively.By lifetime is meant the to- tal time for which the sensor nodes can monitor the whole target area or all the target objects. Two di erent cases have been dealt with- one when the transmission and recep- tion range of sensors can be adjusted and the other in which the range of transmission and reception is xed.Three di erent algorithmic paradigms are used- Greedy heuristic ,Genetic Algorithm and Particle Swarm Optimizatio

    Scheduling Sensors for Guaranteed Sparse Coverage

    Full text link
    Sensor networks are particularly applicable to the tracking of objects in motion. For such applications, it may not necessary that the whole region be covered by sensors as long as the uncovered region is not too large. This notion has been formalized by Balasubramanian et.al. as the problem of κ\kappa-weak coverage. This model of coverage provides guarantees about the regions in which the objects may move undetected. In this paper, we analyse the theoretical aspects of the problem and provide guarantees about the lifetime achievable. We introduce a number of practical algorithms and analyse their significance. The main contribution is a novel linear programming based algorithm which provides near-optimal lifetime. Through extensive experimentation, we analyse the performance of these algorithms based on several parameters defined

    Maximizing lifetime of range-adjustable wireless sensor networks: a neighborhood-based estimation of distribution algorithm

    Get PDF
    Sensor activity scheduling is critical for prolonging the lifetime of wireless sensor networks (WSNs). However, most existing methods assume sensors to have one fixed sensing range. Prevalence of sensors with adjustable sensing ranges posts two new challenges to the topic: 1) expanded search space, due to the rise in the number of possible activation modes and 2) more complex energy allocation, as the sensors differ in the energy consumption rate when using different sensing ranges. These two challenges make it hard to directly solve the lifetime maximization problem of WSNs with range-adjustable sensors (LM-RASs). This article proposes a neighborhood-based estimation of distribution algorithm (NEDA) to address it in a recursive manner. In NEDA, each individual represents a coverage scheme in which the sensors are selectively activated to monitor all the targets. A linear programming (LP) model is built to assign activation time to the schemes in the population so that their sum, the network lifetime, can be maximized conditioned on the current population. Using the activation time derived from LP as individual fitness, the NEDA is driven to seek coverage schemes promising for prolonging the network lifetime. The network lifetime is thus optimized by repeating the steps of the coverage scheme evolution and LP model solving. To encourage the search for diverse coverage schemes, a neighborhood sampling strategy is introduced. Besides, a heuristic repair strategy is designed to fine-tune the existing schemes for further improving the search efficiency. Experimental results on WSNs of different scales show that NEDA outperforms state-of-the-art approaches. It is also expected that NEDA can serve as a potential framework for solving other flexible LP problems that share the same structure with LM-RAS

    Learning automata-based solution to target coverage problem for directional sensor networks with adjustable sensing ranges

    Get PDF
    The extensive applications of directional sensor networks (DSNs) in a wide range of situations have attracted a great deal of attention. One significant problem linked with DSNs is target coverage, which primarily operate based on simultaneously observing a group of targets occurring in a set area, hence maximizing the network lifetime. As there are limitations to the directional sensors’ sensing angle and energy resource, designing new techniques for effectively managing the energy consumption of the sensors is crucial. In this study, two problems were addressed. First, a new learning automata-based algorithm is proposed to solve the target coverage problem, in cases where sensors have multiple power levels (i.e., sensors have multiple sensing ranges), by selecting a subset of sensor directions that is able to monitor all the targets. In real applications, targets may have different coverage quality requirements, which leads to the second; the priority-based target coverage problem, which has not yet been investigated in the field of study. In this problem, two newly developed algorithms based on learning automata and greedy are proposed to select a subset of sensor directions in a way that different coverage quality requirements of all the targets could be satisfied. All of the proposed algorithms were assessed for their performances via a number of experiments. In addition, the effect of each algorithm on maximizing network lifetime was also investigated via a comparative study. All algorithms are successful in solving the problems; however, the learning automata-based algorithms are proven to be superior by up to 18% comparing with the greedy-based algorithms, when considering extending the network lifetime

    PERFORMANCE ANALYSIS AND OPTIMIZATION OF QUERY-BASED WIRELESS SENSOR NETWORKS

    Get PDF
    This dissertation is concerned with the modeling, analysis, and optimization of large-scale, query-based wireless sensor networks (WSNs). It addresses issues related to the time sensitivity of information retrieval and dissemination, network lifetime maximization, and optimal clustering of sensor nodes in mobile WSNs. First, a queueing-theoretic framework is proposed to evaluate the performance of such networks whose nodes detect and advertise significant events that are useful for only a limited time; queries generated by sensor nodes are also time-limited. The main performance parameter is the steady state proportion of generated queries that fail to be answered on time. A scalable approximation for this parameter is first derived assuming the transmission range of sensors is unlimited. Subsequently, the proportion of failed queries is approximated using a finite transmission range. The latter approximation is remarkably accurate, even when key model assumptions related to event and query lifetime distributions and network topology are violated. Second, optimization models are proposed to maximize the lifetime of a query-based WSN by selecting the transmission range for all of the sensor nodes, the resource replication level (or time-to-live counter) and the active/sleep schedule of nodes, subject to connectivity and quality-of-service constraints. An improved lower bound is provided for the minimum transmission range needed to ensure no network nodes are isolated with high probability. The optimization models select the optimal operating parameters in each period of a finite planning horizon, and computational results indicate that the maximum lifetime can be significantly extended by adjusting the key operating parameters as sensors fail over time due to energy depletion. Finally, optimization models are proposed to maximize the demand coverage and minimize the costs of locating, and relocating, cluster heads in mobile WSNs. In these models, the locations of mobile sensor nodes evolve randomly so that each sensor must be optimally assigned to a cluster head during each period of a finite planning horizon. Additionally, these models prescribe the optimal times at which to update the sensor locations to improve coverage. Computational experiments illustrate the usefulness of dynamically updating cluster head locations and sensor location information over time

    Wireless Sensor Network Deployment

    Get PDF
    Wireless Sensor Networks (WSNs) are widely used for various civilian and military applications, and thus have attracted significant interest in recent years. This work investigates the important problem of optimal deployment of WSNs in terms of coverage and energy consumption. Five deployment algorithms are developed for maximal sensing range and minimal energy consumption in order to provide optimal sensing coverage and maximum lifetime. Also, all developed algorithms include self-healing capabilities in order to restore the operation of WSNs after a number of nodes have become inoperative. Two centralized optimization algorithms are developed, one based on Genetic Algorithms (GAs) and one based on Particle Swarm Optimization (PSO). Both optimization algorithms use powerful central nodes to calculate and obtain the global optimum outcomes. The GA is used to determine the optimal tradeoff between network coverage and overall distance travelled by fixed range sensors. The PSO algorithm is used to ensure 100% network coverage and minimize the energy consumed by mobile and range-adjustable sensors. Up to 30% - 90% energy savings can be provided in different scenarios by using the developed optimization algorithms thereby extending the lifetime of the sensor by 1.4 to 10 times. Three distributed optimization algorithms are also developed to relocate the sensors and optimize the coverage of networks with more stringent design and cost constraints. Each algorithm is cooperatively executed by all sensors to achieve better coverage. Two of our algorithms use the relative positions between sensors to optimize the coverage and energy savings. They provide 20% to 25% more energy savings than existing solutions. Our third algorithm is developed for networks without self-localization capabilities and supports the optimal deployment of such networks without requiring the use of expensive geolocation hardware or energy consuming localization algorithms. This is important for indoor monitoring applications since current localization algorithms cannot provide good accuracy for sensor relocation algorithms in such indoor environments. Also, no sensor redeployment algorithms, which can operate without self-localization systems, developed before our work
    corecore