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PERFORMANCE ANALYSIS

AND OPTIMIZATION OF QUERY-BASED

WIRELESS SENSOR NETWORKS

Guvenc Degirmenci, PhD

University of Pittsburgh, 2013

This dissertation is concerned with the modeling, analysis, and optimization of large-scale, query-

based wireless sensor networks (WSNs). It addresses issues related to the time sensitivity of in-

formation retrieval and dissemination, network lifetime maximization, and optimal clustering of

sensor nodes in mobile WSNs. First, a queueing-theoretic framework is proposed to evaluate the

performance of such networks whose nodes detect and advertise significant events that are useful

for only a limited time; queries generated by sensor nodes are also time-limited. The main per-

formance parameter is the steady state proportion of generated queries that fail to be answered

on time. A scalable approximation for this parameter is first derived assuming the transmission

range of sensors is unlimited. Subsequently, the proportion of failed queries is approximated using

a finite transmission range. The latter approximation is remarkably accurate, even when key model

assumptions related to event and query lifetime distributions and network topology are violated.

Second, optimization models are proposed to maximize the lifetime of a query-based WSN by

selecting the transmission range for all of the sensor nodes, the resource replication level (or time-to-

live counter) and the active/sleep schedule of nodes, subject to connectivity and quality-of-service

constraints. An improved lower bound is provided for the minimum transmission range needed to

ensure no network nodes are isolated with high probability. The optimization models select the

optimal operating parameters in each period of a finite planning horizon, and computational results

indicate that the maximum lifetime can be significantly extended by adjusting the key operating

parameters as sensors fail over time due to energy depletion.
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Finally, optimization models are proposed to maximize the demand coverage and minimize the

costs of locating, and relocating, cluster heads in mobile WSNs. In these models, the locations of

mobile sensor nodes evolve randomly so that each sensor must be optimally assigned to a cluster

head during each period of a finite planning horizon. Additionally, these models prescribe the

optimal times at which to update the sensor locations to improve coverage. Computational exper-

iments illustrate the usefulness of dynamically updating cluster head locations and sensor location

information over time.
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1.0 INTRODUCTION

1.1 BASIC DEFINITIONS AND CONCEPTS

A wireless sensor network (WSN) is a collection of autonomous sensing devices (called sensor

nodes) linked by a wireless communication medium to gather and convey information about the

environment in which they are deployed. The sensor nodes are usually inexpensive and are capable

of sensing, communication and some level of computation. Large-scale WSNs are emerging in such

diverse applications as military, environmental, health monitoring, industrial processes monitoring,

infrastructure security and residential use. The ever-increasing interest in WSNs stems from their

ability to sense and convey critical information about objects, their surroundings, and interactions

between them autonomously.

The hardware in a typical wireless sensor node includes a radio transceiver, a processor, memory,

a power supply in the form of a small battery, and one or more sensors. The processor is responsible

for scheduling tasks, processing data and controlling the other components. Sensors produce a mea-

surable response signal to a physical condition such as temperature or humidity. Unlike traditional

wireless devices like cell phones and personal digital assistants, wireless sensor nodes do not rely

on pre-determined communication infrastructures. Each of the nodes communicates with its local

peers and forwards any data cooperatively in a multi-hop fashion. The wireless communication is

performed by the integrated transceiver. While energy is consumed by sensing and processing, the

most energy-consuming activity is communication (i.e., receiving and transmitting packets).

Due to their small physical dimensions, the sensing nodes have very limited energy reserves, local

memory, and computational capabilities. Moreover, to conserve power and alleviate contention for

access to the transmission medium, it is desirable to limit each node’s transmission range to that

required to ensure a connected network. Although each WSN application has its own design, certain

design issues are shared by all applications. Network lifetime, for instance, is directly correlated with
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Figure 1: Examples of basic network topologies (see [68]).

the lifetime of individual sensor nodes. Therefore, it is crucial to prolong the lifetime of those nodes.

In many applications, information gathered by the WSNs is time-sensitive. Processing and/or

communication may cause unacceptably long delays. On the other hand there is a tradeoff between

meeting the quality-of-service (QoS) requirements and energy expenditure at a node, and algorithms

have been devised to address these issues. The optimal operation of WSNs has a profound impact

on their performance. WSNs are more flexible than wired networks because with no wires or

cables to route, installation time and cost is significantly reduced. They can accommodate the

addition of sensor nodes, upgrades and expansions without infrastructure changes. Moreover, for

some applications, wires and cables make monitoring impractical. For instance, moving or rotating

equipment, such as a wind turbine blade, add complexity to the system and require additional

maintenance if a traditional wired monitoring system is used. A WSN eliminates the complexity of

monitoring these components. Moreover, when a WSN is used for diagnostic purposes, each sensor

can reduce component downtime by providing a critical component’s current health status. With

the data obtained, preventive maintenance actions can be taken.

Advances in hardware technology and engineering design have accelerated the development

of WSNs to monitor a wide variety of environmental conditions. Depending on application re-

quirements, one of several basic network topologies, including random mesh, star, ring, bus and

tree-shaped, might be used. Some basic network topologies are shown in Figure 1. Sensor deploy-

ment differs for every network topology. For example, groups of sensors are sometimes dropped
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out of a moving aircraft to maintain random sensor deployment in the field. In other applications,

sensors must be placed one by one by a robot or a human. After the initial deployment, sensors

might even be relocated either intentionally or due to environmental effects.

1.2 APPLICATIONS OF WSNS

WSNs can monitor a wide variety of conditions such as temperature, humidity, pressure, noise

levels, the presence or absence of certain substances, vehicular movement, lightning conditions, etc.

(see [5]). Although WSNs were initially designed for military applications, they have been used in

numerous civilian and industrial applications. In this section, we review common WSN applications

and give some examples.

Military applications: The rapid setup, self-organization and fault/failure tolerance charac-

teristics of WSNs make them very promising for military applications (see [91, 114]). For instance,

remote terrains and paths can be monitored for the movements of enemy forces using WSNs. The

destruction of WSN sensor nodes by opposing forces does not affect the military actions signif-

icantly, because sensor nodes are disposable, inexpensive and the node deployment is typically

dense. Moreover, new sensor nodes can be added or new WSNs can be deployed at any time.

Infrastructure security: In addition to military applications, WSNs are also used for the

security of critical facilities such as fossil or nuclear power plants and airports. For instance,

Flammini et al. [40] proposed an early warning system based onWSNs to monitor structural failures

and security threats including both natural hazards and terrorist attacks in railway infrastructures.

Environmental monitoring: Environmental applications of WSNs include, but are not lim-

ited to, tracking of wildlife including birds, insects or small animals, forest fire surveillance, vol-

cano monitoring, bio-complexity mapping of the environment, irrigation, flood detection, pollution

monitoring and weather forecasting. For instance, WSNs can be used to collect data in glacial envi-

ronments. Traditional sensor nodes cannot be installed inside the ice and the sub-glacial sediment

without disturbing the environment; therefore, WSNs facilitate the collection of data in environ-

mental studies (see [73, 82]). Another example is volcano monitoring where WSNs are used to

monitor volcanic activity, as shown in the Figure 2, with greater spatial resolution than traditional

wired monitoring systems.
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Figure 2: WSN application of volcano monitoring (see [105]).

Health monitoring: In healthcare, WSNs can monitor health indicators such as blood pressure

and body temperature. Physiological data can be gathered and stored for a long period of time.

WSNs can recognize predefined symptoms and physical signs of an illness in a subject patient

without affecting the patient’s quality-of-life. The development of wearable and implantable sensors

introduces a special type of WSN called a body sensor network (see [109, 77]) which is primarily

used to monitor patients with acute diabetes, epilepsy, other debilitating neurological disorders and

chronic cardiac diseases. As WSNs can collect health-related data and report it automatically, they

have the potential to reduce the cost and inconvenience of regular physician visits.

Monitoring industrial processes: Monitoring corrosion, wear and aging in machines or

machine components using manual processes, such as exposure of corrosion (weight loss) coupons

and offline probes, to ensure safe operation is extremely costly and time consuming. Moreover,

many times problems cannot be identified before a substantial damage or a failure occurred (see

[58]). Catastrophic failures can be prevented by monitoring certain health measures of machines

using WSNs (see [71, 45]). For instance, WSNs are used for corrosion monitoring in a wide variety

of industries including oil, gas and petrochemical.

Embedded structural health monitoring: WSNs are used to assess the health status

of a structure (e.g. a bridge or building), or to detect the changes that affect its performance

without interfering with the operation of the structure. For example, structural health monitoring of

4



automobile and aircraft tires using WSNs is gaining prominence. WSNs can be installed to monitor

tire pressure, strain, and temperature to enhance overall safety of a vehicle [79]. Other examples of

structural monitoring regarding to disaster response (earthquake, explosion, etc.) and continuous

structure-health monitoring (ambient vibrations, wind, etc.) can be found in [22, 61, 60, 72].

Residential applications: Advances in hardware technologies and networking solutions are

required for extensive WSN home applications (see [68]). An envisioned smart environment is

proposed by Herring and Kaplan [52] wherein wireless sensor nodes can be integrated into the

furniture and appliances, allowing them to communicate with one another so that they become

self-organizing, self-regulated, and adaptive systems. WSN residential applications can also help

elderly residents by providing memory enhancement, control of home appliances, medical data

lookup, and emergency communication (see [101]).

1.3 CHALLENGES OF WSNS

WSNs have been used in several environmental, engineering and commercial applications, however

they present a number of challenges that must be addressed before their full potential can be

realized. In particular, network deployment, energy efficiency, routing, localization, data gathering

and querying, time sensitivity, robustness, scalability and privacy and security are some of the

primary challenges being addressed by researchers. Some of these challenges are next described in

greater detail.

Network deployment: WSN deployment can be described as the problem of deciding how and

where sensors should be placed to maintain connectivity and coverage. For example, in forest fire

monitoring sensors should be deployed in a way that every point in the environment is within the

range of at least one sensor and every sensor can communicate with every other sensor. Depending

on the application-specific requirements, sensors might be deployed either randomly or in a pre-

determined way, such as by hand or via autonomous robots [64]. In some applications, nodes are

over-deployed for robustness against node failures and energy depletion, while in other applications,

sensor nodes can be added or replaced incrementally when it is necessary. Network topology (star,

grid, mesh or random topology) may vary depending on the application and it affects the network

deployment.
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Energy efficiency and extending lifetime: Sensing, processing, computation and commu-

nication all consume considerable energy, but communication consumes the lion’s share of energy.

The power source of a sensor node is typically a small battery with limited energy stores. In many

cases, nodes are deployed in a hostile or remote environment; therefore, it is impractical to recharge

or replace the battery. For this reason, energy consumption of the nodes is a critical limiting factor

in the design of WSNs. WSN lifetime has been studied extensively in the open literature. Conse-

quently, there are many diverse network lifetime definitions. The most common definition of WSN

lifetime is the time until a certain fraction of nodes fail due to energy depletion. However, this

definition is insufficient in many applications because it does not account for network connectivity

and any quality-of-service (QoS) requirements. A WSN can be viewed as a communication graph,

where sensor nodes acts as the vertices and an edge represents a communication path between any

two nodes. To maintain connectivity, vertices of the graph should not be partitioned into more

than one connected component. In some networks, one or more base stations serve as a gateway

for collecting data from the sensor nodes. In such scenarios, connectivity is ensured when a base

station can be reached from any node. A number of researchers integrate the connectivity and

quality-of-service in the lifetime definition (see [34, 44]). To prolong the network lifetime, several

schemes exploit node mobility, clustering, heterogeneity, such as using a network backbone powered

by more capable nodes in particular areas of the network, which most importantly support node

activity in terms of sensing, data processing and communication (see [23, 99]). Novel routing and

channel access protocols can also extend network lifetime. For example, nodes commonly enter a

low-energy-consumption mode (sleep mode) and schedule active/sleep status to conserve energy.

WSNs must be designed with energy efficiency to ensure that they can remain operational without

sensor or battery replacements.

Routing: Routing in WSNs is challenging for several reasons. First, building a global ad-

dressing scheme for large scale WSNs is not possible. Second, unlike the wired networks, in WSNs

required data is routed to the query node (sink) from multiple sensors (sources). In harsh en-

vironments or when sensors are mobile the link between sensors may fail or the quality of data

transmission may fluctuate [64]. Therefore, periodic data collection or gathering the information

from multiple sensors may be required. Finally, to maintain the accuracy of the information and

robustness, the data traffic might have redundancy in it, which must be addressed for energy ef-

ficiency (see [4]). Moreover, routing protocols may consider link quality, link distance, residual

energy of sensors, location and mobility information for energy efficiency. Data transmission might
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be performed via a multi-hop or single-hop path, depending on the application-specific require-

ments, existing link distance and available energy. Routing protocols might also consider clustering

the nodes so that pre-determined sensors or devices (cluster heads) can do data gathering thereby

maintain reduction of data and energy expenditure. A variety of routing techniques are reviewed in

a cogent survey by Al-Karaki and Kamal [6]. Most protocols aim to minimize the energy expended

by the network while satisfying quality-of-service guarantees.

Localization: Localization is a mechanism to form a map of the network through measure-

ments. The main motivation behind the localization is that the spatial location of the sensors might

be the data that is required, especially in applications such as warehousing. Besides, it might be

used in routing algorithms that uses the positions of sensors to make packet forwarding decisions.

In most cases, the location information is initially known by all nodes. However, when nodes are

mobile, not all sensors are required to know their locations all the time. A fraction of nodes could

be identified and assigned a priori locations or they might improve their location knowledge over

time. The time scale depends on the application and it affects the energy efficiency and perfor-

mance of the network. One of the common localization systems is the Global Positioning System

(GPS) (see [20]). However, GPS may not always meet the operational requirements of WSNs,

especially the limited energy reserves of sensors. Therefore, localization problems are challenging

and attractive for researchers.

Data gathering and querying: Many WSN applications require data be sent to a base

station, which is resource-rich in terms of its computational ability, storage capacity, and energy

store. This causes non-uniform energy consumption patterns. For example, in habitat monitoring,

nodes which are close to the path of a mobile base station (such as a roving van), forward information

coming from all other nodes; therefore, they tend to fail earlier and/or become a bottleneck for

network throughput. In other applications, queries retrieve information from sensing nodes. For

instance, suppose a WSN is collecting and storing information from a particular region on individual

nodes. Queries are sent to sensing nodes to retrieve this information. This type of information

dissemination increases information availability in WSNs. Sensor nodes advertise the information

to a certain number of nodes. Additionally, clustering and the use of mobile agents that randomly

traverse the network to gather and deliver data have also been used for efficient data collection

(see [57]).
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Time sensitivity: In many applications, the sensed data must be delivered, or accessed, within

certain time constraints. For example, in a forest fire monitoring system, fires must be detected

immediately, or even predicted, and this information is used to prescribe immediate remedial or

preventive action. Most of the research to date either ignores the time limitations or focuses on

minimizing the time to deliver or reach information. Routing protocols may prioritize forwarded

information according to its deadline or distance left to travel. Other protocols use feedback control

to maintain an average delay for transmissions (see [101]). However, few researchers have explicitly

addressed ensuring the on-time delivery of time-sensitive data.

Scalability: Because it is envisioned that WSNs will cover large areas, it is anticipated that

they will be comprised of hundreds of thousands, or even millions, of sensor nodes. Large node

density is also a design challenge. For industrial processes monitoring, the node density is around

300 sensor nodes in a 5×5m2 region, while this number will be even higher when hundreds of sensors

are embedded in eye glasses, clothing, shoes and human body (see [5, 64]). The new schemes and

protocols must be able to provide such scalability by using localized communication and hierarchical

architectures.

Robustness: Since it is usually impractical to physically reach sensor nodes, the only prac-

tical type of maintenance in WSNs is the updating of software over the wireless channel. Service

should not be interrupted significantly. Moreover, human interaction in some of the areas, such

as habitat monitoring, is undesirable; therefore, nodes should be able to reconfigure and adjust to

changing environmental conditions. Self-configuring and fault tolerance are important as network

performance should not be affected significantly due to individual node failure, which might result

from unpredictable external events (see [14]).

Privacy and security: In many applications such as battlefield monitoring, data confiden-

tiality is essential. Moreover, data integrity should be guaranteed to prevent unauthorized data in

the network. In such cases, encryption, authentication and intrusion detection schemes maintain

security and reliability (see [86]). However, these consume much of the already constrained energy

sources.
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1.4 RESEARCH OBJECTIVES

While there are a myriad of problems associated with WSN design, modeling and analysis, this

dissertation will address three specific problems associated with time sensitivity of information

gathering, extending network lifetime and maximizing coverage in WSNs. In particular, the focus

of this dissertation is on the performance analysis and optimization of query-based WSNs followed

by a study related to clustering of nodes for networks with mobile sensor nodes.

In many applications, information must be delivered within a certain time so that the data is up-

to-date and, if required, appropriate actions can be taken. As a QoS requirement, the probability

that a query fails to locate information prior to a certain deadline cannot exceed a predetermined

threshold. Many of the studies to date have failed to explicitly consider QoS requirements. However,

usually there is a tradeoff between energy conservation and QoS measures. In the literature there are

very few analytical models that account for energy efficiency, QoS and scalability. A mathematical

framework to evaluate the performance of large-scale WSNs considering QoS is critically needed.

The low cost and flexible monitoring capabilities of WSNs make them very attractive for a

number of applications. However, due to the nature of WSNs and hazardous sensing environments,

prolonging the network lifetime is essential for the performance of WSNs. Even when renew-

able energy sources are used to obtain additional power, the energy available is still limited [100].

Therefore, energy conservation is targeted at the network design level by efficiently designing com-

munication schemes, since transmitting is the most energy-intense activity, and using sleep/active

schedules for nodes or particular components of nodes such as transmission radio. Communica-

tion schemes include decisions regarding the transmission range and time-to-live counter. Energy

expenditure is proportional to the transmission range, such that a longer transmission range in-

creases energy consumption. However, the transmission range must be large enough to maintain

application requirements. During operation, nodes will fail due to battery drain; therefore, node

density will change and the current transmission range must be adjusted to ensure functionality

of the WSN. Similarly, active/sleep schedules should also be updated as node failures and number

of alive nodes in the network changes. Existing mechanisms rarely incorporate simultaneously set-

ting operating parameters such as sleep schedules, transmission range and time-to-live counter to

maximize network lifetime.
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In mobile WSNs, sensor locations typically change after initial deployment due to an incidental

side effect such as environmental influences (wind or water) or due to a desired property of the

system. Putting GPS receivers in every node or manually configuring locations is not cost effective

for most sensor network applications [54, 89]. Some localization techniques have been proposed

to allow nodes to estimate their locations using information transmitted by a set of seed nodes

that know their own locations as they have GPS receivers. These techniques suffer from many

problems from the requirements of special hardware to requirement to a particular network topology.

Therefore, mathematical models that focus on relocation of cluster heads under imperfect knowledge

of sensor locations is required to improve the data coverage and reduce the cost by eliminating

unnecessary traffic and cost caused by broadcasting sensor locations in every time interval.

The primary objectives of this doctoral dissertation are as follows:

1. To develop an analytical queueing-based framework for the performance evaluation of large-

scale, query-based wireless sensor networks whose nodes detect and advertise significant events

that are useful for only a limited time;

2. To use the analytical framework developed in Research Objective 1, to create and solve math-

ematical programming models to maximize WSN lifetime by dynamically choosing operating

parameters (namely resource replication level, transmission range and active/sleep schedules)

subject to QoS and connectivity constraints;

3. To create mathematical programming models to maximize the total sensor demand coverage

by locating and relocating cluster heads and determining the optimal times at which to update

sensor locations in wireless sensor networks with mobile sensor nodes.

The next subsection provides an outline of the dissertation and highlights the main contributions

related to the performance analysis and optimization of wireless sensor networks.

1.5 DISSERTATION OUTLINE AND CONTRIBUTIONS

Chapter 2 presents two models for evaluating the performance of large-scale WSNs with time-

sensitive events and queries using a queueing-theoretic approach. The first model leads to an

approximation for the steady state proportion of query failures as a measure of QoS that is in-

sensitive to the network’s size, while the second model captures the realistic effects of a limited
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transmission range and is asymptotically valid. Both models can accommodate generally dis-

tributed (non-exponential) event agent and query lifetimes. The numerical results indicate that

the approximations perform very well (as compared to results obtained via a commercial network

simulator), even when several of the key model assumptions are violated; the maximum absolute

deviation in probability between the benchmark and approximated values is about 0.0319. The

main results can be used for optimally designing and/or operating large-scale, query-based WSNs.

Specifically, our models provide a proxy for energy expenditure (in the form of traffic rates) and

proportion of query failures as a measure of QoS, and the approximations can be used to opti-

mize other operating parameters including (but not limited to) the transmission range and/or the

time-to-live counter so that a QoS constraint is satisfied. For instance, one might be interested in

optimally selecting operating parameters to minimize energy expenditure while ensuring that the

proportion of failed queries does not exceed a specified threshold. For this purpose, our procedures

can be used to quickly evaluate and rank alternative operating policies without the need for costly

and time-consuming simulation runs.

Chapter 3 explores the problem of network lifetime maximization in query-based WSNs while

focusing on connectivity and QoS requirements. We first provide an approximation of the probabil-

ity that the network is connected taking into account the border effects of a square region. Then,

we develop nonlinear and linear mixed-integer programming models to maximize the network life-

time by choosing the optimal time-to-live counter, transmission range and active/sleep schedules.

The limiting proportion of queries that fail to be answered on time is a critical QoS measure for

query-based WSNs. The approximation of this measure presented in Chapter 2 is used in the

mathematical models. In addition, a solution algorithm for solving a special case of the model

in which all of the alive nodes remain in active mode is proposed. Computational results reveal

that the network lifetime can be prolonged by selecting optimal parameters, and that the average

network lifetime may actually decrease as the variance of energy expenditure increases. The need to

minimize the energy consumption has motivated most of the research in WSNs so far. However, the

simultaneous optimization of multiple operating parameters, while satisfying QoS and connectivity

constraints, has not been explicitly addressed in WSN optimization research. The models of Chap-

ter 3 are designed to maximize the network lifetime by reducing the energy consumption through

determining the operating parameters. This model takes a major step forward towards improving

WSN performance; however, it is clear that further research is needed to solve the proposed models

for large-scale applications.
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Chapter 4 proposes an optimization model to maximize the demand coverage and minimize

the costs of locating, and relocating, cluster heads in a WSN with mobile nodes and unreliable

links. There are similar models proposed for cluster head relocation in the literature; however,

these models either fail to consider the randomness in the movements of mobile sensors or do

not focus on the optimization. Instead, they typically propose relocation protocols, which are

supported by simulation models. Our contribution here is to present a descriptive representation

of the system, which leads to optimal relocation decisions. Additionally, we describe a method to

transform the stochastic model into a deterministic version which can be solved using a commercial

solver. Chapter 4 also uses numerical examples to illustrate the potential gains of making relocation

decisions over time and updating information related to the sensors’ locations when their movements

are described by a stochastic process.

Finally, Chapter 5 summarizes the major findings of this dissertation and explores directions

for future research.
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2.0 PERFORMANCE ANALYSIS OF QUERY-BASED WSNS

This chapter presents a framework to evaluate the performance of large-scale, query-based WSNs

whose sensors detect and advertise significant events that are useful for only a limited time (e.g.,

detecting hazardous biological agents, military surveillance, environmental monitoring, etc.). Event

lifetimes are established to ensure that sensor nodes have the most up-to-date information to

share with other nodes in the network. Query-based WSNs derive their name from the fact that

communication between nodes is either event- or query-driven. That is, either the witnessing of an

event (e.g., a sudden increase in temperature), or the generation of a query (e.g., a request for the

temperature at a distant region of the network) triggers communication between nodes which act

as routers for other nodes’ packets due to a limited sensor transmission range. A query, which itself

has a limited lifetime, traverses the network according to a two-dimensional random walk until it

either locates the desired information or expires. For this type of network, the total proportion

of generated queries that are not answered within their useful lifetime is a critical performance

parameter. This chapter develops simple analytical approximations for this proportion, along with

other network quality-of-service measures, within a queueing framework. The analytical approach

is unique in that it explicitly accounts for the realism of limited event and query lifetimes which

are generally distributed.

Wireless sensor networks have been analyzed from a variety of perspectives including design

considerations, routing protocols, random wake-up schedules and resource management strategies,

to name only a few. Some useful survey papers related to WSN sensing tasks, applications, design

issues, and communications architectures include Akyildiz et al. [5], Yick et al. [110] and Diet-

rich and Dressler [34]. Owing to the fact that sensor nodes are energy-constrained, defining WSN

lifetime and operating policies has emerged as a critical issue. Dietrich and Dressler [34] surveyed

many definitions of WSN lifetime including the number of “alive” nodes, network coverage, net-

work connectivity, and quality-of-service considerations (e.g., event detection rates). Other authors
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(cf. Anastasi et al. [9]) have classified the various energy conservation approaches (e.g., sensor

sleep/wake protocols, data acquisition schemes, mobile sink-based approaches, etc.). WSN lifetime

and energy conservation strategies have further been discussed in [8, 25, 81, 83, 118, 94]. Routing

in WSNs is challenging for at least the following reasons: (1) building a global addressing scheme

for the deployment of nodes is not possible; (2) redundancies in the data since multiple nodes may

generate the same data; (3) sensor nodes have limited transmission capabilities, limited on-board

energy, and limited processing and storage capabilities.

Routing protocols constitute the largest area of research related to the performance of wireless

sensor networks. Routing protocols are broadly labeled as flat, hierarchical (see [84]), and location-

based. Flat (or data-centric) protocols assume all sensor nodes have equal capabilities and similar

roles, whereas hierarchical protocols assign different roles to the nodes. Location-based protocols

use sensor node position information to make routing decisions. The models analyzed in this disser-

tation fall into the category of flat routing and, more specifically, query-based flat routing. Classical

data-centric approaches to locate and advertise data include flooding and gossiping (see [49]) which

are known to be energy- and bandwidth-inefficient. Alternatively, rumor-routing protocols (see

[4, 19, 13, 39, 85, 95, 108]) can be used. Rumor routing uses packets with relatively long lifetimes

called agents. When a node detects an event, it adds information pertaining to the event in a local

event table and immediately creates a time-limited agent that “advertises” the local information to

distant nodes via subsequent packet transmissions. Consequently, a node of the network generates

a query, any node with the information stored in its local event table can respond, when the query

is received. This approach obviates the need for flooding, thereby reducing energy expenditure.

Rumor routing is effective (relative to flooding) when the arrival rate of events is relatively low

but generally requires significant overhead. Specifically, witnessed events are assigned a time-to-

live (TTL) counter, or resource replication level, that is tracked while query lifetimes (which are

limited) are also be tracked.

The resource replication level or time-to-live (TTL) counter (a hop counter) is the number

of times a witnessed event is replicated in the network, and studies related to this parameter

are relatively sparse. Bellavista et al. [15] developed a simulation model (REDMAN) to explore

resource replication levels and related network settings. Krishnamachari and Ahn [65] derived cost

expressions as a function of the resource replication level for unstructured networks in which the

source node is unknown. They used expanding ring queries to search for the information and

formulated a nonlinear programming (NLP) model to determine the optimal number of resource
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replicates, subject to a network storage capacity constraint. Ahn and Krishnamachari [2] extended

the results of [65] to structured networks in d−dimensional space, and studied structured and

unstructured two-dimensional grid and random topology networks. The authors also presented a

model to obtain the optimal resource replication level that minimizes the total expected cost of

replication and searching, subject to a storage capacity constraint. An algorithm for dissemination

and retrieval of information that ensures an even geographical distribution of the informed nodes

is proposed for unstructured wireless ad-hoc networks by Miranda et al. [78]. Antoniou et al. [11]

presented a nature-inspired data flow model for WSNs that considers congestion regions and dead

zones (regions with failing nodes) in a sensor field. Most relevant to our work here, Mann et al.

[76] used a queueing framework to obtain the optimal replication level that minimizes a proxy for

energy expenditure, subject to a performance guarantee on the steady state proportion of failed

queries. Their approach is unique in that it considers time-limited event agents and queries but

is limited to memoryless (exponentially-distributed) lifetimes. Bisnik and Abouzeid [18] used a

queueing network model to analyze random access, multi-hop wireless networks and derived the

average end-to-end delay. Niyato and Hossain [80] developed a queueing model to investigate

the performance of different sleep and wake-up strategies. Chiasserini et al. [27] proposed a

fluid queueing model that accounts for energy consumption, active/sleep dynamics, and traffic

routing. Jiang et al. [56] proposed a queueing-theoretic, power-saving scheme to address non-

uniform node power consumption patterns. Ata [12] considered the problem of dynamically choosing

the transmission rate in a general wireless communications network such that the average energy

consumption per time unit is minimized, subject to a quality-of-service constraint. In that work,

the transmission queue was modeled as a finite-buffer, M/M/1 system. With the exception of

Mann et al. [76], none of the analytical models described herein account explicitly for limited event

agent and query lifetimes.

Most specifically, we present a queueing-theoretic framework for evaluating the steady state

proportion of query failures (i.e., the limiting proportion of generated queries that fail to be an-

swered on time) in a large-scale WSN with time-critical data. While the network model itself is

similar to the one described in [76], it has several important distinguishing attributes. Specifically,

Mann et al. [76] consider only exponentially-distributed event agent and query lifetimes, whereas

our model allows both types of lifetimes to be generally distributed. Second, the model of [76] is

only an infinite-range (single-hop) model that ignores network topology and the limitations of a

finite transmission range. Our approach explicitly models the dynamics of query movement over
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time using a temporally-nonhomogeneous stochastic model that depends explicitly on the transmis-

sion range. We derive analytical approximations that explicitly account for (1) time-limited event

agents and queries, (2) the limited transmission range of sensor nodes, and (3) generally-distributed

resource and query lifetimes. The first approximation, derived using a single-hop model, is shown

to be insensitive to the network’s size. The second approximation, derived from a finite-range (or

multi-hop) model, is shown to be asymptotically valid, and extensive numerical comparisons with

simulated networks verify the exceptional accuracy of the approximations, even when key model

assumptions are violated. It is well known that energy efficiency is a critical issue for WSNs;

however, there exists a delicate tradeoff between satisfying quality-of-service guarantees and min-

imizing energy consumption (or maximizing the network’s lifetime). Our proposed framework

provides easy-to-implement approximations that can be used to devise optimal design or operating

strategies for WSNs (e.g., optimizing the transmission range and/or TTL counter) to minimize

energy expenditure or maximize network lifetime while limiting the proportion of failed queries to

a fixed threshold.

The remainder of this chapter is organized as follows. Section 2.1 provides a description of the

network model, queueing models of sensor node elements, and the most relevant attributes. In

Section 2.2, we derive the steady state proportion of query failures assuming an unlimited sensor

transmission range, while Section 2.3 presents an approximation that explicitly accounts for the

limited transmission range of sensors. Section 2.4 presents extensive numerical results that validate

the analytical approximations.

2.1 MODEL DESCRIPTION

Consider a multi-hop wireless sensor network (WSN) represented by an undirected graph G =

(N ,A) where N = {1, 2, . . . , N} is the node set (or set of vertices), N is the number of sensor

nodes in the network, and A is the arc set of the sensor network. An arc (i, j) is an element

of A if and only if nodes i and j are within transmission range of each other. Once deployed,

the sensor nodes are spatially stationary (i.e., they are not mobile). In this research, we consider

only networks with sensor nodes deployed in a rectangular sensor field R, a subset of Euclidean

2-space. The nodes are assumed to be spatially randomly distributed in R, i.e., the node locations

are uniformly distributed. The node density of the network, ψ, is the average number of nodes
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per unit area (in nodes/m2) given by ψ = N/L where L is the area of sensor field R. For each

i ∈ N , denote by xi the position of sensor node i in Euclidean 2-space. Then for j ∈ N , j 6= i,

the Euclidean distance between xi and xj is ρ(i, j) ≡ ‖xi − xj‖ where ‖ · ‖ denotes the Euclidean

norm. Assuming each sensor node has a transmission range r (in meters), the degree of node i ∈ N
is the number of nodes within transmission range of i given by

di(r) ≡
∑

j∈N\{i}
1(ρ(i, j) ≤ r),

where 1(x) is an indicator function that assumes the value 1 if condition x holds and 0 other-

wise. Obviously, di(r) depends on the deployment of nodes in R, the network topology, and the

transmission range of individual sensor nodes. Finally, the average degree of the network is

d̄(r) ≡ 1

N

N∑

i=1

di(r).

A node i ∈ N for which di(r) = 0 is said to be isolated. Isolated nodes are essentially useless

to the WSN since they cannot exchange information with other nodes. The WSN is said to be

disconnected if there is a non-empty subset of isolated nodes in N but is completely connected if

there is at least one path between nodes i and j for every i, j ∈ N . Obviously, it is undesirable

for the network to be disconnected, particularly when the information relayed by nodes is time

sensitive. When the nodes are uniformly distributed in R with homogeneous node density ψ, the

minimum transmission range needed to ensure the network is completely connected with probability

p is (see Theorem 1 of [16])

r̂ ≥
√

− ln
(
1− p1/N

)

π ψ
. (2.1)

The lower bound in (2.1) can be used, for example, to create discrete-event simulation models of

wireless sensor networks that ensure connectivity with high probability.

Next, we describe individual sensor nodes in greater detail. (This discussion is similar to that

of Mann [76].) It is assumed that sensor nodes are identical, i.e., they have identical resource re-

quirements, physical limitations, and performance limitations. They are also similar with respect to

their information requirements and the rates at which they observe and report relevant phenomena.

Each sensor node is equipped with processing, transmitting, and sensing capabilities, as well as a

limited power supply in the form of an on-board battery that cannot be recharged and is generally

difficult, if not impossible, to replace.

In query-based WSNs, sensor nodes serve as both producers and consumers of network resources,

and the transmission of data is triggered when an event occurs or a query is generated. A node
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produces a resource when (1) it monitors the environment and gathers data on the occurrence of

pertinent events; or (2) it offers a particular service to the network. In addition to data gathering,

nodes are also required to execute specific applications in support of the network’s goals. When

a node requires access to a resource that is not available locally, the node is forced to traverse

the network to locate the necessary information and/or services. Next, we describe node activities

triggered by the occurrence of an event or a request for information.

When a node witnesses a relevant phenomenon or offers a particular service to the network,

it broadcasts this information to a subset of the network by means of an event agent – a packet

that describes the resource available, the location of the resource (or, alternatively, the data itself),

and the duration of time the resource is available or valid. In this chapter, we assume that agents

are transmitted from node-to-node via a random walk until either the witnessed event expires (i.e.,

it reaches its deadline), or it exhausts its time-to-live (TTL) counter – an integer hop counter

representing the maximum number of times the resource may be replicated in the network. It is

worth mentioning that a variety of routing protocols can be assumed (cf. [75]), but the results herein

assume transmission to a randomly-selected neighbor. This type of random-walk-based routing

protocol is useful for maintaining load balancing in a statistical sense (see [6]). Additionally, it

is simple to implement, requires nodes to store very little state information, and is a pragmatic

choice for large-scale networks with limited node mobility. Each sensor node is equipped with an

on-board event table. Whenever an event agent is received, or an event is witnessed by the node,

the contents of the event agent are added to the event table, and the node is labeled as informed,

as long as the event agent’s lifetime has not expired. On the other hand, if a node’s event table

does not contain the information witnessed or delivered by an event agent, then the node is said to

be uninformed.

In addition to witnessing and forwarding events, nodes generate queries to request data or

resources from the network. A query contains at least three pieces of information: the identifier

and/or location of the node originating the request, the resource sought, and the maximum amount

of time the query is permitted to traverse the network in search of an informed node. Only informed

nodes are capable of answering the queries of uninformed nodes. Similar to event agents, queries

are forwarded from node-to-node via a random walk. If a query is received by an informed node, the

query is terminated and the informed node generates a response that is returned to the query origin

node via the shortest path (least number of hops). We assume responses follow the shortest path

because, whatever protocol is used to determine the response route, the best currently available
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route will be discovered first since those routing packets will reach the route-requesting node first.

The query response packet contains the information stored in the informed node’s event table and,

if available, the desired data. If a query cannot locate an informed node within its lifetime, the

query fails. It is worth noting that we assume there are known data elements, and each query

requests a particular data element; so there is a one-to-one correspondence between a query and

a satisfying data element. Moreover, while it is conceivable that nodes receive redundant queries

and/or event agents from multiple sources, we assume the receiving node neither aggregates nor

generalizes the data in any way. Finally, it is assumed that all transmitted data are accurate, and

there are no packet collisions.

Our main objective is to assess a critical quality-of-service measure for query-based WSNs,

namely the long-run proportion of queries that fail to be answered on time. To this end, we create

a queueing network model that leads to simple analytical expressions and accommodates easy

computational implementation.

2.1.1 Queueing Models of Node Elements

For each i ∈ N , events are assumed to arrive according to a Poisson process with rate λ. Each

witnessed event is time sensitive, i.e., it is useful for only a limited time before it expires. Therefore,

once an event is witnessed by a node, it is added to the node’s event table and assigned a lifetime, Z,

a non-negative, non-defective random variable. Event lifetimes (across all nodes) are independent

and identically distributed (i.i.d.) random variables with common cumulative distribution function

(c.d.f.) G(w) ≡ P(Z ≤ w), w ≥ 0, and mean E(Z) = 1/δ < ∞. As long as the event agent has not

expired in the event table, the node is informed and can answer queries arriving from other nodes.

Because event agents are mutually independent, and do not necessarily expire in their order of

arrival, the event table can be modeled as an M/G/∞ queueing system whose input is a Poisson

process with aggregate arrival rate Λ and whose service time is generally distributed with c.d.f. G

(see Figure 3).

The event arrival rate Λ depends on many factors, not the least of which is the transmission

range r. We pause here to remark that, in general, the superposition of locally-witnessed events

and externally-generated event advertisements does not necessarily form a Poisson process since

the latter do not (in general) originate from a Poisson stream. Furthermore, the event table may

not realistically have infinite capacity. Therefore, the evolution of the number of busy servers in
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Locally-witnessed events

Event agents

Event expirations

Figure 3: Graphical depiction of a sensor node’s event table as an M/G/∞ queue.

the M/G/∞ model must be viewed as an approximation of the evolution of event table content.

However, it will be shown in Section 2.4 that this assumption is not overly restrictive and that the

proportion of query failures is surprisingly insensitive to the Poisson assumption. We choose the

M/G/∞ model for its tractability and generality with respect to event lifetimes. Specifically, it

provides a simple expression for the steady state proportion of time an arbitrary node in the WSN

is uninformed given by

π0 ≡ P(E = 0) = exp (−Λ/δ) ,

where E is the steady state number of events in the event table. Once a node witnesses an event,

the information is forwarded until its TTL counter is exhausted. Henceforth, we denote the TTL

counter by ` ∈ N.
Each sensor node contains a transmitter along with an (assumed) infinite buffer for storing

data packets (queries, event agents, or responses). When a non-expired event agent arrives to a

node, either because an event was witnessed, or because the agent is received from another node, the

agent joins the transmission queue after a copy has been added to the node’s event table. Moreover,

when a node receives a query, either the query or the response is sent to the transmission queue,

depending on whether the node is informed or uninformed. In either case, the query fails if the

time elapsed from the moment of its inception until it locates an informed node exceeds its lifetime.

While responses also join the transmission queue, this traffic stream is assumed to be negligible

(relative to event agent and query traffic) since responses follow the shortest path and make far

fewer hops than event agent agents or queries. Hence, we do not include response traffic in the

total arrival rate calculation. The node’s transmission queue is modeled as a single-server queueing

system as depicted in Figure 4.
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Figure 4: Graphical depiction of the sensor node’s transmission queue.

Specifically, we assume that each node’s transmission queue operates as a non-prioritized, multi-

class M/M/1 queueing system with a first-come-first-served (FCFS) queueing discipline. Arrivals

are assumed to originate from a Poisson process with rate λq. As depicted in Figure 4, the aggregate

arrival process is comprised of locally-witnessed events, agents from other nodes, locally-generated

queries, and queries arriving from other nodes. When a query is generated or received by a node,

it joins the transmission queue only if the node is uninformed. The service time is the time

needed to transmit a query or an event agent (either a locally-witnessed event or an advertisement

from another node). Irrespective of the packet type, we assume the transmission time τ is an

exponential random variable with parameter µ, c.d.f. F (x) ≡ P(τ ≤ x) = 1− exp(−µx), and finite

mean E(τ) = 1/µ. This assumption not only facilitates analytical tractability, but allows for larger

variance in the transmission time. The transmission queue is stable if and only if µ > λq. This

condition is usually met in practice since transmission rates are generally very high. It is important

to note that the total arrival rate of traffic to the transmission queue serves as a proxy for energy

expenditure at a node since transmitting is the primary energy consuming activity (cf. [87]).

2.1.2 Network Performance Parameters

The primary concern of this chapter is the assessment of the steady state probability that a gener-

ated query fails to be answered on time. We refer to this performance parameter as the proportion

of query failures. A query is said to fail if it expires awaiting transmission or while being transmit-

ted. Our main aim is to provide easy-to-use analytical expressions for this parameter that allow us

to circumvent costly, time-consuming simulation experiments for large-scale networks. To this end,
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let T be a non-negative random variable denoting the total time needed for a query to locate an

informed node as measured from the time the query is generated at a node n ∈ N . This random

time depends on the status of node n at the time of creation. Define the indicator variable

In =




1, if node n is informed,

0, if node n is uninformed.

The c.d.f. of [T |In = 0] is denoted by B(t) ≡ P(T ≤ t|In = 0), t ≥ 0 for any n ∈ N . At the time of

generation, the query is assigned a lifetime, X, so that if T exceeds X, the query does not locate

the desired information before expiring, and it fails. The c.d.f. of X is H(x) ≡ P(X ≤ x), x ≥ 0,

and its mean is E(X) = 1/β < ∞. Recall that π0 is the proportion of time an arbitrary node is

uninformed. Proposition 4.1 characterizes the primary performance parameter.

Proposition 2.1. The unconditional proportion of query failures is

∆ ≡ P(T > X) = π0

∫ ∞

0
[1−B(x)] dH(x). (2.2)

Proof. Since (in steady state) a node is uninformed with probability π0, we can use a conditioning

argument to obtain

∆ ≡ P(T > X) =

1∑

i=0

∫ ∞

0
P(T > X|X = x, In = i)P(In = i)dH(x)

=

∫ ∞

0
P(T > x|In = 0)P(In = 0)dH(x)

= π0

∫ ∞

0
P(T > x|In = 0)dH(x)

= π0

∫ ∞

0
[1−B(x)] dH(x).

The expression for the proportion of query failures is straightforward except that the distribution

function B is difficult to characterize in all but a few cases. That is, the time to locate an informed

node is influenced by many factors including (but not limited to) the transmission range, availability

of the requested data, the query’s lifetime, and network traffic, all of which are interrelated. The

next section considers the case when the sensors all use an infinite transmission range.
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2.2 UNLIMITED SENSOR TRANSMISSION RANGE

In this section, we provide an approximation for ∆ when r = ∞, i.e., when each node’s transmission

range is large enough to ensure that any other node in the network can be reached with a single

hop. Although several assumptions are employed, the primary purpose of this model is to provide

a framework for a more realistic limited transmission range model.

2.2.1 Approximating Network Traffic

Here we establish approximations for event agent and query arrival rates at an arbitrary node of

the network. The first result bounds the aggregate event agent arrival rate to the sensor node’s

event table. This bound sets the stage for an approximation of the steady state proportion of time

that any node is uninformed.

Proposition 2.2. Assume events arrive locally to each n ∈ N according to a Poisson process with

rate λ. Then the aggregate event arrival rate Λ to an arbitrary n ∈ N is bounded above by λ (1+ `)

where ` is the time-to-live counter.

Proof. The aggregate event arrival rate Λ consists of the Poisson rate of locally-witnessed events,

and the aggregate rate of witnessed events arriving from the other N − 1 nodes in the network.

Therefore, Λ = λ+Λx where Λx denotes the rate of external event arrivals. An event agent can be

forwarded to, at most, ` nodes. Since r = ∞, each node can be reached with a single hop; hence,

each event advertisement is equally likely to be received by one of the other N − 1 nodes. That is,

a particular node receives one of the (potential) ` advertisements with probability `/(N − 1), and

since N − 1 other nodes transmit event agents,

Λx ≤ λ (N − 1)

(
`

N − 1

)
= λ `.

Therefore, Λ ≤ λ+ λ ` = λ (1 + `).

Next, we provide a lower bound for the steady state proportion of time a node is uninformed.

An event agent is assigned a lifetime Z once it enters the event table. The random variable Z has

c.d.f. G and finite mean E(Z) = 1/δ. As noted in Section 2.1, the event table is approximated

by an M/G/∞ queue with (Poisson) arrival rate Λ and service time distribution G, since the
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limiting probability of an empty system depends on G only through its mean. Using the well-

known steady state distribution of the M/G/∞ system (see [66]), the limiting proportion of time

a node is uninformed is

π0 = exp(−Λ/δ), 0 < δ < ∞. (2.3)

By Proposition 2.2, the event agent arrival rate to a node is bounded above by λ (1+ `). Therefore,

π0 ≥ exp

[−λ(1 + `)

δ

]
. (2.4)

Similarly, the event agent arrival rate to the node’s transmission queue, λe, is also bounded

above. Although an event agent is transmitted at most ` times, the node which receives it at the

`th transmission does not add the agent to its transmission queue since the agent’s time-to-live

counter will have expired. Therefore,

λe ≤ λ+ λ(N − 1)
`−1∑

i=1

1

N − 1
= λ`. (2.5)

While the bounds of (2.4) and (2.5) are valid, they may not be tight since they do not explicitly

account for the expiration of event agents waiting in the transmission queue, or those that expire

during transmission. Proposition 2.3 provides an improved bound for λe (by considering the effect

of event expirations) that leads to an improved approximation for π0. In what follows, let αj denote

the probability that an event agent expires at the jth visited node, j = 0, 1, 2, . . ., where the 0th

visited node is the event witnessing node. For simplicity, define the expiration probability at the

witnessing node by α ≡ α0. Assuming the event lifetime c.d.f. G has an increasing failure rate

(IFR), then 0 < α ≤ α1 ≤ α2 ≤ · · · . This assumption asserts that event agents age over time, i.e.,

given that an event agent is alive at time t, the likelihood that it expires in (t, t+a) for some a > 0

is increasing in t.

Proposition 2.3. Suppose G is an IFR distribution function so that 0 < α ≤ α1 ≤ α2 ≤ · · · .
Then for a fixed time-to-live counter `,

λe ≤ λ

[
1− (1− α)`

α

]
≤ λ`.

Proof. Since each of the N − 1 nodes is equally likely to receive an advertised event agent, an

individual node receives the kth transmission with probability

1

N − 1

k−1∏

j=0

(1− αj), k = 1, 2, . . . , `− 1.
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That is, the event agent is forwarded at most ` times; however, the last node that receives the agent

does not add it to its transmission queue since the agent’s time-to-live counter will have expired.

Therefore, the approximate total rate of event arrivals to a node’s transmission queue is given by

λe = λ+ λ(N − 1) ·
`−1∑

k=1

1

N − 1

k−1∏

j=0

(1− αj)

≤ λ+ λ ·
`−1∑

k=1

(1− α)k

= λ
`−1∑

k=0

(1− α)k

≤ λ

[
1− (1− α)`

α

]
≤ λ`,

where the last inequality follows from α ∈ (0, 1).

For the results that follow, we use the approximation,

λe ≈ λ

[
1− (1− α)`

α

]
,

to improve the approximation of π0. Similarly, because the event agent is forwarded at most `

times, it can be shown that the event agent arrival rate to the event table is approximated by

Λ ≈ Λ̂ = λ

[
1− (1− α)`+1

α

]
. (2.6)

Therefore, by equation (2.3), when r = ∞, the approximate steady state proportion of time a node

is uninformed is given by

π0 ≈ exp

[
−λ

δ

(
1− (1− α)`+1

α

)]
. (2.7)

Approximations (2.6) and (2.7) essentially ignore the probability that an event agent revisits a node

because, in the single-hop model with N large and ` moderately small, the likelihood of revisiting

any node is negligible.

Next, we examine the total traffic experienced at the transmission queue. Let λq be the total

arrival rate of event agents and queries to a sensor node’s transmission queue. Each node generates

local queries according to a Poisson process with rate γ. When a query is generated locally, or

received from another node, it is added to the transmission queue only if the subject node is

uninformed. The arrival rate of locally-generated queries to the transmission queue, ql, is ql = π0 γ.

Let qx denote the rate at which external queries arrive at a node. In steady state, the query visits
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an informed node with probability 1−π0 and an uninformed node with probability π0, independent

of the number of hops prior to the current visit. Consequently, the number of hops needed to first

locate an informed node follows a geometric distribution with success probability 1− π0 and mean

1/(1 − π0). Since any node is equally likely to receive a query, the probability of receiving an

external query is 1/[(1 − π0)(N − 1)]. Because all other N − 1 nodes generate queries identically,

qx is approximately

qx = γ π0 (N − 1)
1

(1− π0)(N − 1)
=

γπ0
1− π0

. (2.8)

Finally, we approximate the total arrival rate of traffic to a node’s transmission queue by

λq ≈ λ̂e + ql + qx = λ

[
1− (1− α)`

α

]
+ π0γ

(
2− π0
1− π0

)
. (2.9)

By (2.7) and (2.9), we see that π0 and, consequently, λq are explicit functions of α. Therefore, the

approximation of λq is written as

λq ≈ c(α) ≡ λ

[
1− (1− α)`

α

]
+ γe−g(α)

[
2− e−g(α)

1− e−g(α)

]
, (2.10)

where

g(α) =
λ

δ

[
1− (1− α)`+1

α

]
.

We are now prepared to provide an expression for α, the probability that an event agent expires

in the first transmission queue. The result is approximate since the input to the transmission queue

is assumed to be the superposition of independent Poisson arrival streams. The equilibrium random

variable Ze associated to the lifetime Z with c.d.f. G and mean E(Z) has c.d.f.

Ge(z) ≡ P(Ze ≤ z) =
1

E(Z)

∫ z

0
[1−G(u)]du.

We make use of the equilibrium distribution of the event agent lifetime in the following proposition

that characterizes α.

Proposition 2.4. Assume µ > c(α) for each λ and δ such that 0 < λ < ∞ and 0 < δ < ∞.

Let W be the total time spent at a node’s transmission queue (delay plus transmission time) by an

arbitrary arrival in steady state. Then α satisfies the fixed point equation

α = P(W > Ze) = G̃e(µ− c(α)) = E
[
e−[µ−c(α)]Ze

]
, (2.11)

where G̃e(µ− c(α)) denotes the Laplace-Stieltjes transform (LST) of Ge evaluated at µ− c(α).
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Proof. The transmission queue is modeled as an M/M/1 queueing system with mean transmission

time 1/µ and aggregate arrival rate c(α). Let Wn be the total time spent in the transmission queue

(i.e., the delay time plus the transmission time) by the nth arrival to the queue, either an event

agent or a query. It is well known (see [43]) that if µ > c(α), then Wn ⇒ W as n → ∞ where W is

exponentially distributed with mean 1/(µ− c(α)) and (⇒) is convergence in distribution (or weak

convergence). Suppose an event agent arrives at time t so that Z − t is the residual lifetime of the

event. Using basic results from renewal theory (cf. [66]), Z − t ⇒ Ze as t → ∞. Therefore, by

conditioning on Ze, we obtain

α = P(W > Ze) =

∫ ∞

0
e−(µ−c(α))zdGe(z) = G̃e(µ− c(α)) = E

[
e−(µ−c(α))Ze

]
.

To illustrate (2.11), suppose the event lifetime is exponentially distributed with mean 1/δ. Then,

Ge(z) = G(z) = 1 − exp(−δz) for all z ≥ 0, and the unique probability α solves the fixed point

problem

α =
δ

µ− c(α) + δ
,

where c(α) is given by (2.10). For an arbitrary equilibrium distribution Ge, we need to solve (2.11)

numerically to obtain α. As seen by (2.7) and (2.9), the approximations of π0 and λq depend

explicitly on α. Therefore, we use the following fixed point iteration algorithm, which is standard

in most numerical analysis textbooks (cf. [21]), to solve for α. Let π
(k)
0 , λ

(k)
q and α(k) be the

approximated values of π0, λq and α at the kth iteration of the algorithm, respectively. The

algorithm first obtains an initial guess of α using bounds (2.4) and (2.5). Each subsequent iteration

uses approximations (2.7) and (2.9) to update these values until a convergence criterion is satisfied.

Algorithm to Compute α:

Step 0: Initialization via the bounds of (2.4) and (2.5).

k := 0;

π
(k)
0 := exp [−λ(1 + `)/δ];

λ
(k)
q := λ `+ γπ

(k)
0

(
2− π

(k)
0

1− π
(k)
0

)
;

α(k) := G̃e

(
µ− λ(k)

q

)
.
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Step 1: Update the approximations.

k := k + 1;

π
(k)
0 := exp

[
−λ

δ

(
1− (

1− α(k−1)
)`+1

α(k−1)

)]
;

λ(k)
q := λ

[
1− (

1− α(k−1)
)`

α(k−1)

]
+ γπ

(k)
0

[
2− π

(k)
0

1− π
(k)
0

]
;

α(k) := G̃e

(
µ− λ(k)

q

)
.

Step 2:Check convergence criterion.

If
∣∣α(k) − α(k−1)

∣∣ > ε, return to Step 1;

Else α := α(k);

Stop.

Recall that our aim is to approximate ∆ of (2.2) by assuming r = ∞. To this end, let T̃ denote

the time to locate an informed node when r = ∞ and let

∆∞ ≡ P(T̃ > X) = π0

∫ ∞

0
[1−B(x)]dH(x).

The c.d.f. of T̃ is a function of both λq (c(α)) and π0, both of which are determined by α. The

next section shows how to obtain ∆∞.

2.2.2 Approximate Query Failure Rate

Queries, which can be generated at any node n ∈ N , are forwarded via a random walk to one-hop

neighbors until either an informed node is located, or the query expires while awaiting transmission

in some node’s transmission queue (or while being transmitted). Once generated, a query is assigned

a lifetime X having c.d.f. H(x) ≡ P(X ≤ x), x ≥ 0. Let us assume for the moment that a query

generated at an uninformed node can be forwarded indefinitely (i.e., X = ∞ w.p. 1), and let M

be the (integer) number of hops needed to first locate an informed node.

Let Tk denote the time spent by a query at its kth location. That is, T0 denotes the time spent

at the query origin node (which is uninformed), T1 is the time spent at the first visited node, which

might be informed or uninformed, and so forth. To simplify notation, let T̃u ≡ [T̃ |In = 0] be the
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elapsed time between creation of the query at an uninformed node and the time it first locates an

informed node. It is easy to see that

T̃u =
M−1∑

k=0

Tk.

Because we assume r = ∞ and identical nodes, in steady state, a query visits an informed node

with probability 1−π0 and an uninformed node with probability π0, independent of any prior visits.

Thus, M is a geometric random variable with success probability 1− π0 and mean 1/(1− π0), i.e.,

T̃u is a geometric sum of i.i.d. exponential random variables.

Lemma 2.1. Given that a query is generated at an uninformed node, the time to locate an informed

node is exponentially distributed with parameter (1− π0)(µ− λq), i.e.,

B(x) ≡ P(T̃u ≤ x) = 1− exp [−(1− π0)(µ− λq)x] , x ≥ 0, (2.12)

where λq ≡ c(α) is obtained using the value of α that solves the fixed point equation (2.11).

Using Lemma 2.1, we next provide our approximate expression for the steady state proportion of

query failures when r = ∞.

Proposition 2.5. Assuming Poisson event arrivals and query generation, the proportion of query

failures in an infinite-range WSN is

∆∞ = P(T̃ > X) = π0 H̃[(1− π0)(µ− λq)], (2.13)

where H̃(s) = E
(
e−sX

)
is the LST of the query lifetime distribution function H.

Proof. The proof follows directly by conditioning on the lifetimeX and utilizing Lemma 2.1. Specif-

ically,

∆∞ = P(T̃ > X) =

∫ ∞

0
P(T̃ > X|In = 0, X = x)P(In = 0)dH(x)

= π0

∫ ∞

0
e−(1−π0)(µ−λq)xdH(x)

= π0 H̃ [(1− π0)(µ− λq)] .

Proposition 2.5 provides the steady state proportion of generated queries that fail to be answered

on time, and it holds for all query lifetime distributions that possess a LST. However, if the

distribution function H is heavy-tailed and does not possess an LST, the transform approximation
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method (TAM) developed by Harris and Marchal [48], or its modification by Shortle et al. [96], can

be used to approximate H̃. It is noteworthy that (2.13) is insensitive to the size of the network N .

Scalability of the WSN is an important issue as realistic networks are envisioned to have thou-

sands or even hundreds of thousands of sensor nodes. The infinite range approximations of this

section are appealing due to their insensitivity to N . In this single-hop model, for large N , the

likelihood that a given node is visited more than once by an event agent or query is negligible

since a witnessing node forwards an event agent to, at most, ` distinct nodes. Similarly, queries

are assumed to visit a distinct node at each hop, independently of all prior hops. However, to con-

serve energy, realistic sensor nodes use a limited transmission range, so the likelihood of revisiting

neighbors when using a random-walk protocol can be significant, as highlighted by Rodero-Merino

et al. [88]. Obviously, forwarding event agents to informed nodes, and/or repeatedly transmitting

queries to uninformed nodes wastes precious energy stores, prolongs the time needed to locate in-

formed nodes and, ultimately, increases the query failure rate. This revisiting effect is even more

pronounced for nodes located near the borders of the deployment region, as these nodes generally

have a smaller node degree. In the next section, we present an approximation scheme that assumes

a limited transmission range and explicitly accounts for the revisiting and border effects.

2.3 LIMITED SENSOR TRANSMISSION RANGE

In this section, we present an approximation for the steady state proportion of query failures that

explicitly accounts for the limited transmission range of wireless sensors (i.e., a multi-hop model).

Specifically, we approximate ∆r, the steady state proportion of query failures when the sensor nodes

have transmission range of r (r < ∞). Additionally, we show that for large N , the approximation

converges appropriately to ∆∞ as r → ∞.

2.3.1 Modeling Query Dynamics

Here we consider the status (and movement) of an individual query from its inception until it either

locates an informed node or fails due to expiration. If a query is generated at an informed node,

it is answered immediately and never forwarded; therefore, we focus on the case when a query is

generated at an uninformed node. At its inception the query is instantaneously assigned a lifetime
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X with c.d.f. H(x) and mean E(X) = 1/β (0 < β < ∞). It is forwarded to a randomly selected

node within the r-radius of the current node until either an informed node is located or the query

lifetime ends, in which case it is destroyed. In what follows, all random quantities are conditioned

on the event {X = x}; therefore, we make the dependence on x explicit. Before proceeding with

the formal model description, let us recall our node-labeling convention.

The query origin node is labeled as the 0th visited node, and if the query is successfully trans-

mitted to an uninformed node next, it joins that node’s transmission queue. This subsequent node

is labeled as the first visited node at which the query awaits its second transmission, and so forth.

More generally, a query awaits its kth transmission at the (k − 1)st visited node. Now, for each

integer k (k ≥ 0), let Qk be the status of the query just before potentially joining the transmission

queue of the kth visited node. That is, following the (k − 1)st visit, the query might not join the

next transmission queue because its lifetime may have ended, or it may have been answered at

the (k − 1)st visited node. The query only joins the kth node’s transmission queue if the query

is alive and unanswered after the (k − 1)st visit. Therefore, the query can be in one of three

mutually exclusive and exhaustive states: active (state 0), answered (state 1), or expired (state

2). For each k ≥ 0, Qk ∈ S ≡ {0, 1, 2} where Qk = 0 means the query, having been successfully

transmitted k times, has not expired but has not been answered; Qk = 1 means the query, having

been successfully transmitted k times is answered at the kth visited node (i.e., the kth visited node

is informed); and Qk = 2 means the query was successfully transmitted k − 1 times but expired

awaiting its kth transmission (or during its kth transmission) at the (k − 1)st visited node. (Note

that P(Q0 = 2) = 0.) The process Q ≡ {Qk : k ≥ 0} is an S-valued discrete-time Markov chain

(DTMC) with temporally-nonhomogeneous one-step transition probability matrix, P(k, x), given

by

P(k, x) =




p00(k, x) p01(k, x) p02(k, x)

0 1 0

0 0 1


 , k ≥ 0, x ≥ 0 (2.14)

where for each i, j ∈ S,

pij(k, x) ≡ Px(Qk+1 = j|Qk = i), k ≥ 0,

denotes the probability that the status of the query transitions from i to j at the (k+1)st step and

Px(A) ≡ P(A|X = x) for any measurable event A. Once a query locates an informed node, it is no

longer forwarded to a neighbor node, and if the query lifetime ends awaiting transmission (or during

transmission), it is destroyed; therefore, states 1 and 2 are absorbing states of the DTMC. Row 0
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of P(k, x) contains the critical transition probabilities. In particular, p02(k, x) is the probability

that the query fails at the kth visited node, given it was active just before being added to the kth

visited node’s transmission queue. Likewise, p00(k, x) is the probability the query remains active

just before being added to the (k + 1)st visited node’s transmission queue, given it was active just

before being added to the kth node’s transmission queue. Finally, p01(k, x) is the probability that

a query is answered at the (k+1)st visited node, given it was active just before being added to the

kth visited node’s transmission queue.

Obviously, the DTMC Q is reducible with one transient state (state 0) and two closed com-

municating classes, namely C1 = {1} and C2 = {2}; therefore, its limiting behavior is fairly

easy to characterize. Before examining the limiting behavior, we characterize the distribution of

{Qk : k ≥ 0} at a particular step k. Let vkj (x) = Px(Qk = j) be the (unconditional) probability

that the query is in state j ∈ S just before joining the transmission queue of the kth node, and

let vk(x) = [vkj (x)]j∈S be a (1 × 3) row vector comprised of these values. Because Q possesses a

time-nonhomogeneous transition probability matrix, the vector vk(x) can be obtained recursively

(cf. [62]) by

vk+1(x) = vk(x)P(k, x), k ≥ 0,

whose solution is given by

vk+1(x) = v0(x)
k∏

n=0

P(n, x), k ≥ 0. (2.15)

The square matrix on the right-hand side of (2.15) is the (k+1)-step transition probability matrix

of Q. The transient analysis of Q facilitates an analysis of its limiting behavior which, in turn, is

used to derive an expression for the steady state probability that a query fails to locate an informed

node before its lifetime ends.

To this end, let us define the limiting probability vector

v(x) ≡ lim
k→∞

vk+1(x) = lim
k→∞

v0(x)
k∏

n=0

P(n, x) = v0(x) lim
k→∞

k∏

n=0

P(n, x). (2.16)

Before approximating this vector, we first establish the existence and structure of the limit in the

right-most term of (2.16) via Theorem 2.1.

Theorem 2.1. For a fixed lifetime x (x > 0), there are real numbers α1(x) and α2(x) such that

A(x) ≡ lim
k→∞

k∏

n=0

P(n, x) =




0 α1(x) α2(x)

0 1 0

0 0 1


 ,
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where α1(x), α2(x) ∈ (0, 1) and α1(x) + α2(x) = 1.

Proof. Using induction, it can be shown that the (k+1)-step transition probability matrix is given

by

k∏

n=0

P(n, x) =




∏k
n=0 an

∑k
n=0 bn

(∏n−1
j=0 aj

) ∑k
n=0 cn

(∏n−1
j=0 aj

)

0 1 0

0 0 1


 , (2.17)

where an ≡ p00(n, x), bn ≡ p01(n, x), cn ≡ p02(n, x), n ≥ 0, and a−1 ≡ 1. First, note that rows 1 and

2 of
∏k

n=0P(n, x) are as given in (2.17) for any k ∈ N; hence, we need only concern ourselves with

row 0. Allowing k → ∞ on both sides of (2.17), and noting that 0 < an < 1, we see immediately

that

lim
k→∞

k∏

n=0

an = 0,

α1(x) ≡ lim
k→∞

k∑

n=0

bn

n−1∏

j=0

aj = b0 +

∞∑

n=1

bn

n−1∏

j=0

aj ≥ b0 > 0, (2.18)

and

α2(x) ≡ lim
k→∞

k∑

n=0

cn

n−1∏

j=0

aj = c0 +
∞∑

n=1

cn

n−1∏

j=0

aj ≥ c0 > 0. (2.19)

Since each row of A(x) is comprised of nonnegative real numbers, and the row sums must be unity

(cf. [31]), we conclude that α1(x) + α2(x) = 1 which, in light of (2.18) and (2.19), implies that

0 < α1(x) < 1 and 0 < α2(x) < 1.

For computational purposes, we approximate v(x) by truncating the infinite product of (2.16)

at an appropriate integer q. Specifically, for a sufficiently large q ∈ N, the approximation for v(x)

is given by

v(x) ≈ vq+1(x) = v0(x)

q∏

n=0

P(n, x), (2.20)

where q is chosen such that ‖vq+1(x) − vq(x)‖∞ < ε with ‖ · ‖∞ the usual ∞-norm and ε a

convergence threshold.

2.3.2 Approximate Query Failure Rate

Let ∆r be the limiting probability of query failure provided each sensor’s transmission range is r

(r < ∞) and let

v2(x) ≡ lim
k→∞

vk2 (x) = lim
k→∞

Px(Qk = 2).
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The unconditional proportion of query failures is approximately

∆r =

∫ ∞

0
v2(x)dH(x). (2.21)

Let π0(r) be the steady state proportion of time an arbitrary node is uninformed when the

transmission range is r. Note that v2(x) depends implicitly on r through π0(r) since v0(x) =

(π0(r), 1− π0(r), 0), and A(x) depends on π0(r). However, we suppress this dependence on r for

ease of notation. To compute v(x) (or its approximation vq(x) via (2.20)), we now provide an

expression for p02(k, x) and, subsequently, expressions for p00(k, x) and p01(k, x).

Lemma 2.2. For a fixed lifetime x (x > 0), the transition probability p02(k, x) is

p02(k, x) =
e−(µ−λq)x

G(k, x)
· [(µ− λq)x]

k

k!
, k ≥ 0, (2.22)

where for each k ≥ 1, G(k, x) is the c.d.f. of a k-phase Erlang random variable with parameter

µ− λq and G(0, x) ≡ 1.

Proof. If the query is transmitted to the kth node, then it had k successful prior transmissions

without expiring. As before, let Ti denote the sojourn time at the ith visited node, i ≥ 0. Because

each node’s transmission queue is modeled as a stable M/M/1 queue, {Ti : i ≥ 0} is an i.i.d.

sequence of random variables with parameter µ−λq. Denote by Yk the total time elapsed from the

moment a query is generated at an uninformed node up to and including its kth transmission, i.e.,

Yk =
k−1∑

i=0

Ti,

where Yk is a k-phase Erlang random variable with parameter µ − λq. It is well-known (cf. [66])

that, for k ≥ 1, the c.d.f. of Yk is

G(k, x) ≡ P(Yk ≤ x) = 1−
k−1∑

n=0

e−(µ−λq)x [(µ− λq)x]
n

n!
.

We can express the conditional probability p02(k, x) in terms of the random variables Yk and Yk+1

by noting that

p02(k, x) = P(Yk+1 > x|Yk ≤ x)

is the probability the query lifetime ends at the kth visited node while awaiting its (k + 1)st

transmission, given it had successfully made k prior transmissions and was active just before joining
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the kth node’s transmission queue. When k = 0, p02(0, x) is the probability the query lifetime ends

in the transmission queue of the query origin node given by

p02(0, x) = P(Y1 > X|X = x) = P(T0 > x) = e−(µ−λq)x.

For k ≥ 1, using basic conditional probability,

p02(k, x) = P(Yk+1 > x|Yk ≤ x) =
G(k, x)−G(k + 1, x)

G(k, x)
=

e−(µ−λq)x

G(k, x)

[(µ− λq)x]
k

k!
.

The remaining probabilities in row 0 of P(k, x), p00(k, x) and p01(k, x), depend on whether or not

the query revisits uninformed nodes during its lifetime when r < ∞. For this reason, it is necessary

to first compute the probability that the query visits a particular node n ∈ N for the first time at

its kth visit.

To this end, let Uk be the location of the query just after its kth hop and note that {Uk : k ≥ 0}
is a time-homogeneous DTMC with state space N = {1, . . . , N}. Define its one-step transition

probability matrix by θ(r) = [θij(r)]i,j∈N . As in Section 2.1, for j 6= i, let ρ(i, j) = ‖xi − xj‖ and

let di(r) be the degree of node i ∈ N . Assuming any neighbor of the current node is equally likely

to receive a query transmission, for i, j ∈ N such that j 6= i, the transition probability θij(r) is

θij(r) =




1/di(r), if ρ(i, j) ≤ r,

0, if ρ(i, j) > r.

(Note that θii(r) = 0 for all i ∈ N as a query cannot be transmitted to the current node.)

Now, to account for revisiting effects, let q(k, r) be the probability that a query (or event agent)

visits a distinct (previously unvisited) node at the kth visit, and let ur(i, j, k) be the probability of

visiting node j at least once before the (k+1)st visit, given that the query (or agent) originates at

node i. Let wr(i, j, k) denote the probability the query visits state j for the first time on the kth

visit, given it originated at node i. We have the following lemma.

Lemma 2.3. For each k ∈ N and r ∈ (0,∞),

q(k, r) ≈ q̂(k, r) =
1

N

∑

i∈N

∑

j∈N\{i}
[ur(i, j, k)− ur(i, j, k − 1)] (2.23)

where

ur(i, j, k) =





θij(r) +
∑

m∈N\{j}
θim(r)ur(m, j, k − 1), k ≥ 1,

0, k = 0.
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Proof. The lemma is proved using standard results for DTMCs. Specifically, define

T r
ij = inf{k ≥ 1 : Uk = j|U0 = i}

as the first passage time to node j ∈ N , given that the query (or event agent) was generated at

node i ∈ N . Then,

ur(i, j, k) = P(T r
ij ≤ k),

and these probabilities can be obtained recursively by conditioning on the location of the query

after its first transmission. The derivation is similar to that outlined in Theorem 4.1 of [66] and

shows that for k ≥ 1,

ur(i, j, k) = θij(r) +
∑

m∈N\{j}
θim(r)ur(m, j, k − 1), i, j ∈ N ,

where ur(i, j, 0) ≡ 0 for each i, j ∈ N . Using ur(i, j, k), the probability the query’s first visit to

node j is the kth visit, given the query originated at node i, is

wr(i, j, k) ≡ P(T r
ij = k) = ur(i, j, k)− ur(i, j, k − 1), k ≥ 1.

Assuming a query is generated at any i ∈ N with equal probability (i.e., P(U0 = i) = 1/N for all

i ∈ N ), via unconditioning, the approximate probability a query visits a distinct node at the kth

visit is

q(k, r) ≈ q̂(k, r) =
1

N

∑

i∈N

∑

j∈N\{i}
wr(i, j, k), k ≥ 1.

Lemma 2.3 facilitates simple approximations for the transition probabilities p00(k, x) and p01(k, x),

k ≥ 0, which are provided in the next proposition.

Proposition 2.6. The transition probabilities p00(k, x) and p01(k, x), k ≥ 0, are respectively ap-

proximated by

p00(k, x) ≈ [1− q̂(k + 1, r)(1− π0(r))] [1− p02(k, x)], (2.24)

p01(k, x) ≈ q̂(k + 1, r)[1− π0(r)] [1− p02(k, x)]. (2.25)

Proof. This approximation assumes that if node i is uninformed when a query first visits the node,

it remains uninformed during any subsequent visits to node i by the same query. We justify this

assumption by noting that the mean recurrence time to node i is proportional to r. To approximate
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p00(k, x), condition on whether or not the (k + 1)st visited node is distinct. First, given the query

does not expire at the kth visited node, the (k + 1)st visited node is not distinct with probability

1 − q̂(k + 1, r). In the second case, given the query does not expire at the kth visited node, the

(k + 1)st node is distinct with probability q̂(k + 1, r), and it is uninformed with probability π0(r).

Therefore, the probability of locating an uninformed node at the (k + 1)st visit, given the query

was active just before joining the transmission queue of kth node is, for k ≥ 0,

p00(k, x) ≈ [1− q̂(k + 1, r)][1− p02(k, x)] + q̂(k + 1, r)π0(r)[1− p02(k, x)]

= [1− q̂(k + 1, r)(1− π0(r))] [1− p02(k, x)].

To approximate p01(k, x), note that the query moves from state 0 (active) to state 1 (answered)

if it was successfully transmitted from the kth visited node to a distinct node that is informed.

Therefore, for k ≥ 0,

p01(k, x) ≈ q̂(k + 1, r)[1− π0(r)][1− p02(k, x)].

Using the approximation of P(k, x), we now provide improved approximations for the WSN

traffic rates, the steady state proportion of time nodes are uninformed, and the steady state pro-

portion of failed queries. It was shown in Section 2.2 that, if each sensor’s range is such that all

N − 1 other nodes belong to its neighborhood, the total arrival rate of witnessed events (both local

and external) to the node’s event table is

Λ ≈ Λ̂ = λ

[
1− (1− α)`+1

α

]
.

The approximation Λ̂ does not account for the revisiting effects noted in this section. The following

result uses q̂(k, r) to correct for revisits and improve the approximate total arrival rate to the event

table. To distinguish these values, let Λ(r) be the total arrival rate of local and external events as

a function of r. Then we can write

Λ(r) ≈ Λ̂(r) = λ+ λ d̄(r)

(
q̂(1, r)(1− α)

d̄(r)
+

q̂(2, r)(1− α)2

d̄(r)
+ · · ·+ q̂(`, r)(1− α)`

d̄(r)

)

= λ

[
1 +

∑̀

i=1

q̂(i, r)(1− α)i

]
,

where d̄(r) is the network’s average node degree. Using Λ̂(r), the steady state proportion of time

nodes are uninformed, π0(r), is

π0(r) ≈ exp

[
−λ

δ

(
1 +

∑̀

i=1

q̂(i, r)(1− α)i

)]
. (2.26)
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Equation (2.26) is used to compute the elements of P(k, x), namely p00(k, x) and p01(k, x) via

(2.24) and (2.25), respectively. These lead to the limiting matrix A(x), from which we obtain the

limiting probability v2(x) via (2.20). Finally, we obtain ∆r via (2.21). The asymptotic validity of

this approximation is discussed in the next subsection.

2.3.3 Asymptotic Validity of Approximation

In this subsection, we show that the finite transmission range approximation is asymptotically valid

by proving that, for large N , the proportion of query failures converges to ∆∞ as r → ∞. To this

end, we have the following important lemma.

Lemma 2.4. For large N , as r → ∞, q̂(k, r) → 1 for each k ∈ N.

Proof. First note that

lim
r→∞ di(r) = lim

r→∞
∑

j∈N\{i}
1(ρ(i, j) ≤ r) = N − 1.

Therefore, for i, j ∈ N with j 6= i,

θij(r) =
1

di(r)
→ 1

N − 1

as r → ∞. By induction on k ∈ N, we now characterize the limiting behavior of ur(i, j, k) as

r → ∞. For k = 1, note that ur(i, j, 1) = θij(r) → 1/(N − 1). For k = 2, it is easy to show that

lim
r→∞ur(i, j, 2) = lim

r→∞


θij(r) +

∑

m∈N\{j}
θim(r)ur(m, j, 1)




=
1

N − 1
+

∑

m∈N\{i,j}

(
1

N − 1

)2

=
2

N − 1
+O(N−2),

where O(N−2) → 0 as N → ∞. For the inductive step, assume ur(i, j, n) → n/(N − 1) +O(N−2)

for any n ∈ N. With some simplification we obtain

lim
r→∞ur(i, j, n+ 1) = lim

r→∞


θij(r) +

∑

m∈N\{j}
θim(r)ur(m, j, n)




=
1

N − 1
+

∑

m∈N\{i,j}

1

N − 1

[
n

N − 1
+O(N−2)

]
=

n+ 1

N − 1
+O(N−2),
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which completes the induction proof. Therefore, for each k ∈ N and i, j ∈ N with j 6= i,

lim
r→∞wr(i, j, k) ≡ lim

r→∞ [ur(i, j, k)− ur(i, j, k − 1)] =
1

N − 1
,

and consequently,

lim
r→∞ q̂(k, r) = lim

r→∞
1

N

∑

i∈N

∑

j∈N\{i}
wr(i, j, k) =

1

N

∑

i∈N

∑

j∈N\{i}

1

N − 1
= 1.

Lemma 2.4 is used to prove Theorem 2.2 which asserts that, as r → ∞, the approximate event arrival

rate, proportion of time uninformed, and the proportion of query failures all converge appropriately

to their respective infinite-range counterparts for large networks.

Theorem 2.2. For large N , as r → ∞, Λ̂(r) → Λ, π0(r) → π0, and ∆r → ∆∞.

Proof. By Lemma 2.4, q̂(k, r) → 1 for each k ∈ N as r → ∞. Therefore,

lim
r→∞ Λ̂(r) = lim

r→∞

[
λ+ λ

∑̀

i=1

q̂(i, r)(1− α)i

]
= λ lim

r→∞
∑̀

i=0

q̂(i, r)(1− α)i

= λ

[
1− (1− α)`+1

α

]
= Λ.

Consequently, by (2.26) we see that π0(r) → π0 as r → ∞. Next, recall that for r < ∞,

∆ ≈ ∆r =

∫ ∞

0
v2(x)dH(x)

where v2(x) = limk→∞ vk2 (x). So as r → ∞, we substitute v0(x) = (π0, 1− π0, 0) in the expression

vk(x) = v0(x)
k−1∏

n=0

P(n, x).

Using (2.14), (2.22), (2.24), and (2.25), we now show by induction on k that the elements of vk(x)

are

vk0 (x) = πk+1
0 G(k, x), (2.27)

vk1 (x) =
k∑

n=1

[πn
0 (1− π0)G(n, x)] + 1− π0, (2.28)

vk2 (x) = π0

[
1− πk−1

0 G(k, x)− (1− π0)

k−1∑

n=1

πn−1
0 G(n, x)

]
. (2.29)
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For k = 1, applying (2.15) with v0(x) = (π0, 1− π0, 0), it is easy to see that

v10(x) = π2
0G(1, x),

v11(x) = π0(1− π0)G(1, x) + 1− π0,

v12(x) = π0[1−G(1, x)],

where the summation in (2.29) is 0 when k = 1. Similarly, for k = 2,

v20(x) = π3
0G(2, x),

v21(x) = π2
0(1− π0)G(2, x) + π0(1− π0)G(1, x) + 1− π0,

v22(x) = π0 [1− (1− π0)G(1, x)− π0G(2, x)] ;

therefore, the result holds for k = 1, 2. For the inductive step, assume that (2.27)–(2.29) hold for

an arbitrary m ∈ N. Then, after some matrix algebra, we obtain

vm+1
0 (x) = πm+2

0 G(m+ 1, x),

vm+1
1 (x) =

m+1∑

n=1

[πn
0 (1− π0)G(n, x)] + 1− π0,

vm+1
2 (x) = π0

[
1− πm

0 G(m+ 1, x)− (1− π0)
m∑

n=1

πn−1
0 G(n, x)

]
,

and the induction proof is complete. Now, as r → ∞,

v2(x) = lim
k→∞

vk2 (x) = lim
k→∞

[
π0

(
1− πk−1

0 G(k, x)− (1− π0)
k−1∑

n=1

πn−1
0 G(n, x)

)]

= π0

[
1− (1− π0)

∞∑

n=1

πn−1
0 G(n, x)

]
.

We obtain a closed-form expression for v2(x) via its Laplace-Stieltjes transform, ṽ2(s), given by

ṽ2(s) ≡
∫ ∞

0
e−sxdv2(x) = π0

[
1− 1− π0

π0

∞∑

n=1

(
π0(µ− λq)

µ− λq + s

)n
]

= π0

[
1− 1− π0

π0

( ∞∑

n=0

(
π0(µ− λq)

µ− λq + s

)n

− 1

)]

= π0

[
1− (1− π0)(µ− λq)

(1− π0)(µ− λq) + s

]
.

Now, ṽ2(s) can be inverted analytically to obtain

v2(x) = L−1

{
ṽ2(s)

s

}
= π0 e

−(1−π0)(µ−λq)x,
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where L−1 is the inverse Laplace transform operator. Finally, we obtain

lim
r→∞∆r =

∫ ∞

0
π0 e

−(1−π0)(µ−λq)xdH(x)

=

∫ ∞

0
P(T̃ > X|In = 0, X = x)π0dH(x)

= P(T̃ > X)

= ∆∞.

In this section, we have modeled query dynamics using a temporally-nonhomogeneous DTMC.

The elements of the transition probability matrix (2.14) are provided by Lemma 2.2 and Proposi-

tion 2.6. We derived a new approximation for the proportion of query failures via (2.21) by exam-

ining the limiting behavior of the DTMC. This analysis explicitly accounts for the dependence of

the network’s performance on a limited transmission range and query revisiting by approximating

the probability, q(k, r), that a query visits a distinct node on its kth visit. This probability also

captures the boundary effect – namely that nodes near the borders of the deployment region are

likely to have fewer neighbors, and hence, an increased likelihood of transmitting to previously

visited nodes. In Section 2.4, we illustrate and assess the quality of the finite- and infinite-range

approximations by comparing the steady state proportion of time uninformed and proportion of

query failures with results obtained by a commercial network simulator.

2.4 NUMERICAL EXAMPLES AND VALIDATION

The analytical approximations of Sections 2.2 and 2.3 provide a relatively easy way to evaluate the

behavior of query-based wireless sensor networks. In this section, we assess the quality of these

approximations by comparing them with simulated values obtained using the OPNET commercial

network simulator. Presented herein are summary tables and figures for uniform-topology networks

with a variety of distributional assumptions and sensor transmission ranges. For each experiment,

the minimum transmission range was chosen to ensure a connected network with probability p =

0.9999 using (2.1). Results for 1000- and 5000-node networks first are provided before presenting

an extensive validation study that examines impact of our model assumptions.
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For each scenario, we compute the maximum absolute deviation (MAD) between the approxi-

mated value and its simulated counterpart over a finite set of TTL values, L ≡ {1, 2, . . . , 30}. We

choose this set because, for many typical wireless applications, a TTL counter between 3 and 25

is suitable. For each ` ∈ L, let π`
0 be the approximate steady state proportion of time nodes are

uninformed, assuming r = ∞, which is obtained via (2.7), i.e.,

π`
0 = exp

[
−λ

δ

(
1− (1− α)`+1

α

)]
.

Similarly, let π`
0(r) be the same value, assuming r < ∞, obtained by (2.26). That is,

π`
0(r) = exp

[
−λ

δ

(
1 +

∑̀

i=1

q̂(i, r)(1− α)i

)]
.

For both cases, the probability α is approximated using the fixed point algorithm described in

Section 2.2. To express the dependence of ∆ on the TTL value `, let ∆`∞ and ∆`
r denote the

steady proportion of query failures when r = ∞ and r < ∞, respectively. Using (2.13) and (2.21),

respectively, we compute

∆`
∞ ≡ π`

0

∫ ∞

0
exp

[
−(1− π`

0)(µ− λq)x
]
dH(x)

and

∆`
r ≡

∫ ∞

0
v2(x)dH(x),

where v2(x) is obtained via (2.20). In cases where the integrals cannot be evaluated in closed form,

we perform numerical integration via the trapezoidal rule. Finally, we define πs
0(`) as the simulated

steady state proportion of time nodes are uninformed, and ∆s(`) as the simulated steady state

proportion of query failures when the TTL counter is ` ∈ L.

The MAD between the true (simulated) values and their corresponding analytical approxima-

tions are therefore

Dπ ≡ max
`∈L

|πs
0(`)− π̂0(`)| , (2.30)

where π̂0(`) = π`
0 if r = ∞, and π̂0(`) = π`

0(r) if r < ∞. Similarly, let

D∆ ≡ max
`∈L

∣∣∣∆s(`)− ∆̂0(`)
∣∣∣ , (2.31)

where ∆̂(`) = ∆`∞ if r = ∞, and ∆̂(`) = ∆`
r if r < ∞. For Examples 1 and 2 that follow, a

few parameter values were held constant; these values are summarized in Table 1. Moreover, we

assumed event lifetimes are exponentially distributed with mean 1/δ in these two cases, but this

assumption is relaxed in Example 3.
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Table 1: Summary of parameter values for OPNET simulation: Examples 1, 2 and 4.

Parameter Parameter description Value

µ Transmitter’s exponential transmission rate 5.000

λ Poisson rate of locally-witnessed events (for all n ∈ N ) 0.005

γ Poisson rate of locally-generated queries (for all n ∈ N ) 0.050

1/δ Mean event lifetime 10.000

1/β Mean query lifetime (for all distributions) 5.000

The analytical approximations were coded in the C programming language and executed in

Microsoft
R©

Visual Studio
R©

2008 on a personal computer equipped with an Intel
R©

CoreTM 2

Duo CPU operating at 3.00GHz with 2.00 GB of RAM. The simulated values were obtained via

a discrete-event simulation model created in the OPNET Modeler
R©

Wireless Suite v. 15. Ten

(10) independent replications were performed for each ` ∈ L to ensure a standard error less than

5×10−4. The plotted simulated values represent the average of the 10 replications. The run length

was 3720s, including a 120s warm-up period for each replication. The simulation experiments were

conducted on a personal computer equipped with an Intel
R©

CoreTM i7 CPU operating at 2.67GHz

with 2.00 GB of RAM.

Table 2: MAD in the proportion of time uninformed (Dπ) when N = 1000.

Query lifetime
350m 500m 1000m 5000m

r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞
Exponential(0.2) 0.0523 0.0045 0.0289 0.0065 0.0202 0.0116 0.0024 0.0060

Triangular(0.1, 5.0, 9.9) 0.0529 0.0059 0.0296 0.0055 0.0173 0.0088 0.0173 0.0131

Uniform(0.1, 9.9) 0.0507 0.0068 0.0285 0.0041 0.0171 0.0093 0.0039 0.0070

Rayleigh(5.645) 0.0511 0.0050 0.0298 0.0055 0.0176 0.0088 0.0043 0.0069

Weibull(3.0, 5.6) 0.0511 0.0061 0.0302 0.0061 0.0173 0.0088 0.0035 0.0072
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Example 1: 1000-Node Network: Here, we present results for a 1000-node wireless sensor

network with nodes distributed randomly in a 3335m × 3335m sensor field. The node density

is ψ ≈ 9.00 × 10−5 nodes per square meter. To ensure a connected network with probability

0.9999, the minimum required sensor transmission range is r = 239m. Therefore, we considered

the following transmission ranges: 350m, 500m, 1000m, 5000m. Table 2 summarizes the MAD in

the proportion of time uninformed using each transmission range. The column labeled “r = ∞”

corresponds to the infinite transmission range approximation, and the column labeled “r < ∞”

is the finite range approximation. Table 2 indicates an order of magnitude improvement in the

MAD by using the finite-range approximation, especially when the actual transmission range in

the simulation model is small (350m). Because queries are more likely to revisit neighbors when the

transmission range is small, the difference between the two approximations is quite pronounced.

Table 2 also illustrates consistency in the performance of the approximations when the query

Figure 5: Comparison of π0 values with Weibull query lifetimes (N = 1000): (-) OPNET; (o) r = ∞; (+) r < ∞.
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Table 3: MAD in the proportion of failed queries (D∆) when N = 1000.

Query lifetime
350m 500m 1000m 5000m

r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞
Exponential(0.2) 0.0371 0.0246 0.0168 0.0103 0.0047 0.0055 0.0060 0.0052

Triangular(0.1, 5.0, 9.9) 0.0459 0.0301 0.0170 0.0128 0.0030 0.0008 0.0082 0.0024

Uniform(0.1, 9.9) 0.0383 0.0258 0.0178 0.0121 0.0035 0.0015 0.0051 0.0016

Rayleigh(5.645) 0.0237 0.0127 0.0065 0.0158 0.0256 0.0270 0.0255 0.0247

Weibull(3.0, 5.6) 0.0485 0.0306 0.0230 0.0149 0.0031 0.0014 0.0022 0.0014

lifetime distribution is not exponential. Specifically, the magnitudes of the MAD values for the

non-exponential cases are generally consistent with those of the exponential case. In the worst

case, the MAD of the triangular lifetime distribution exceeds the MAD of the exponential by

0.01494 (5000m range assuming r = ∞); however, on average, the increase in the MAD over

all the non-exponential cases is 0.0022, or roughly 0.2%. Figure 5 depicts the performance of

the approximations and reveals that the finite range approximation is superior to the infinite range

approximation for all TTL values when r is small. Indeed, the gap between the latter approximation

and OPNET simulation values increases with ` since the revisiting effect is more pronounced when

the TTL value is large. For larger ranges, the approximations nearly coincide and both closely

track the simulated values.

Results for the steady state proportion of query failures are summarized in Table 3. Both

approximation schemes perform extremely well (the maximum absolute deviation over all cases

is less than 0.049). It is also worth noting that the finite range approximation outperforms the

infinite range approximation, particularly when r is relatively small. The results here are also

consistent for non-exponential query lifetimes. In the worst case, the MAD of the Rayleigh lifetime

distribution exceeds the MAD of the exponential by 0.0215 (1000m range assuming r < ∞); on

average, the increase in the MAD over all the non-exponential cases is 0.0065, or roughly 0.65%.

Figure 6 graphically depicts the four cases.
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Figure 6: Comparison of ∆ values with Weibull query lifetimes (N = 1000): (-) OPNET; (o) r = ∞; (+) r < ∞.

Example 2: 5000-Node Network: Here, we consider a 5000-node wireless sensor network with

nodes deployed in the same region as the 1000-node case but with node density ψ ≈ 4.50×10−4 nodes

per square meter. To ensure a connected network with probability 0.9999, the minimum required

sensor transmission range is r = 112m. Therefore, we considered the following transmission ranges:

115m, 350m, 500m, and 5000m. Table 4 illustrates the quality of both approximations for the

5000-node network. The maximum absolute deviation for the proportion of time uninformed is less

than 0.082 for r = ∞, and it is reduced to, at most, 0.0174 when the revisiting effect is included. As

before, the superiority of the finite range approximation is generally more pronounced for smaller

transmission ranges. Figure 7 depicts the simulated and approximated values of π0 when the query

lifetime follows a triangular distribution. When the transmission range is small (115m), we see

some discrepancy between the two approximation schemes. However, for the other three cases, the

approximations nearly coincide and are very similar to the simulated results (Dπ < 0.011).
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Table 4: MAD in the proportion of time uninformed (Dπ) when N = 5000.

Query lifetime
115m 350m 500m 5000m

r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞
Exponential(0.2) 0.0605 0.0172 0.0107 0.0019 0.0082 0.0031 0.0040 0.0049

Triangular(0.1, 5.0, 9.9) 0.0612 0.0174 0.0100 0.0015 0.0068 0.0026 0.0053 0.0062

Uniform(0.1, 9.9) 0.0819 0.0054 0.0105 0.0013 0.0074 0.0025 0.0048 0.0058

Rayleigh(5.645) 0.0595 0.0172 0.0101 0.0016 0.0074 0.0026 0.0051 0.0060

Weibull(3.0, 5.6) 0.0611 0.0174 0.0099 0.0014 0.0068 0.0028 0.0073 0.0083

Figure 7: Comparison of π0 values with triangular query lifetimes (N = 5000): (-) OPNET; (o) r = ∞; (+) r < ∞.
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Table 5: MAD in the proportion of query failures (D∆) when N = 5000.

Query lifetime
115m 350m 500m 5000m

r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞
Exponential(0.2) 0.0493 0.0283 0.0046 0.0022 0.0045 0.0043 0.0061 0.0044

Triangular(0.1, 5.0, 9.9) 0.0588 0.0333 0.0052 0.0026 0.0013 0.0024 0.0044 0.0045

Uniform(0.1, 9.9) 0.0724 0.0493 0.0044 0.0047 0.0051 0.0021 0.0078 0.0023

Rayleigh(5.645) 0.0371 0.0170 0.0214 0.0192 0.0265 0.0225 0.0286 0.0228

Weibull(3.0, 5.6) 0.0619 0.0351 0.0071 0.0064 0.0025 0.0041 0.0039 0.0021

Figure 8: Comparison of ∆ values with triangular query lifetimes (N = 5000): (-) OPNET; (o) r = ∞; (+) r < ∞.
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Next, we compare the maximum absolute deviation of the proportion of query failures. Ta-

ble 5 shows that the maximum deviation values are bounded above by 0.0725. Again, the finite

range approximation outperforms the infinite range version when the transmission range is small.

However, for larger ranges, the results nearly coincide and closely track the simulated values.

Figure 8 graphically depicts the simulated and approximated values of ∆ and illustrates the

high quality of the approximations. In the worst case (115m), the MAD is less than 0.0725 and

0.05 for r = ∞ and r < ∞, respectively.

Example 3: Model Validation: We conducted an experiment to validate the approximations

when some of the model assumptions regarding the query and event lifetime distributions are

violated. For the benchmark simulation experiments presented here, events arrive according to

a renewal process with a specified (non-exponential) interarrival time distribution (i.e., the event

arrival process is not Poisson). This experiment also employs non-exponential event agent and

query lifetimes, both of which are used in the approximations of Sections 2.2 and 2.3.

Table 6 provides a summary of the numerical results for 45 distinct test cases using a 1000-node

wireless sensor network with nodes distributed randomly in a 3335m × 3335m sensor field. The

node density is ψ ≈ 9.00 × 10−5 nodes per square meter. To ensure a connected network with

probability 0.9999, the minimum required sensor transmission range is r = 239m; therefore, we set

r = 350m.

Table 6 reveals some very interesting results. First, we note that the performance of the finite-

range approximation is similar to that reported in Example 1 which assumed Poisson-generated

events. Specifically, despite the fact that the event arrival process is distinctly non-Poisson, and

the query and event lifetimes are not exponential, the benchmark proportion of failed queries is

approximated very closely using the finite-range approximation. Over all 45 test cases, the observed

maximum absolute deviation between the simulated proportion of query failures and the approx-

imated values (using the finite-range model) is about 0.0319, and the average absolute deviation

is about 0.0237. Considering the complexity of event agent and query dynamics, and the random

nature of arrivals and transmissions, we consider these discrepancies to be quite acceptable. For

example, if an engineer is interested in selecting the optimal TTL value that minimizes energy ex-

penditure while satisfying a quality-of-service constraint based on the proportion of query failures,

then our approximation can be used to quickly assess the query failure rate using alternative TTL

values. Alternatively, one might consider jointly optimizing the TTL value and the transmission
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Table 6: MAD in the proportion of time uninformed (Dπ) and proportion of failed queries (D∆).

Trial Event interarrival time Event lifetime Query lifetime
Dπ D∆

r = ∞ r < ∞ r = ∞ r < ∞
1 Er(5, 40.0) Er(4, 2.5) Er(5, 1.0) 0.0711 0.0233 0.0421 0.0265
2 Er(5, 40.0) Tri(0.1, 10.0, 19.9) Er(5, 1.0) 0.0693 0.0215 0.0428 0.0273
3 Er(5, 40.0) Uni(0.1, 19.9) Er(5, 1.0) 0.0596 0.0124 0.0424 0.0273
4 Er(5, 40.0) Er(4, 2.5) Ray(5.645) 0.0696 0.0213 0.0201 0.0106
5 Er(5, 40.0) Tri(0.1, 10.0, 19.9) Ray(5.645) 0.0699 0.0220 0.0203 0.0106
6 Er(5, 40.0) Uni(0.1, 19.9) Ray(5.645) 0.0594 0.0130 0.0213 0.0106
7 Er(5, 40.0) Er(4, 2.5) Tri(0.1, 5.0, 9.9) 0.0687 0.0213 0.0399 0.0262
8 Er(5, 40.0) Tri(0.1, 10.0, 19.9) Tri(0.1, 5.0, 9.9) 0.0682 0.0206 0.0407 0.0267
9 Er(5, 40.0) Uni(0.1, 19.9) Tri(0.1, 5.0, 9.9) 0.0584 0.0100 0.0400 0.0259
10 Er(5, 40.0) Er(4, 2.5) Uni(0.1, 9.9) 0.0691 0.0218 0.0340 0.0209
11 Er(5, 40.0) Tri(0.1, 10.0, 19.9) Uni(0.1, 9.9) 0.0690 0.0211 0.0342 0.0205
12 Er(5, 40.0) Uni(0.1, 19.9) Uni(0.1, 9.9) 0.0589 0.0118 0.0344 0.0211
13 Er(5, 40.0) Er(4, 2.5) Weib(3.0, 5.6) 0.0699 0.0229 0.0424 0.0278
14 Er(5, 40.0) Tri(0.1, 10.0, 19.9) Weib(3.0, 5.6) 0.0677 0.0201 0.0427 0.0282
15 Er(5, 40.0) Uni(0.1, 19.9) Weib(3.0, 5.6) 0.0584 0.0096 0.0428 0.0278
16 Tri(1.0, 200.0, 399.0) Er(4, 2.5) Er(5, 1.0) 0.0739 0.0261 0.0438 0.0282
17 Tri(1.0, 200.0, 399.0) Tri(0.1, 10.0, 19.9) Er(5, 1.0) 0.0713 0.0235 0.0429 0.0274
18 Tri(1.0, 200.0, 399.0) Uni(0.1, 19.9) Er(5, 1.0) 0.0615 0.0145 0.0433 0.0282
19 Tri(1.0, 200.0, 399.0) Er(4, 2.5) Ray(5.645) 0.0718 0.0235 0.0213 0.0106
20 Tri(1.0, 200.0, 399.0) Tri(0.1, 10.0, 19.9) Ray(5.645) 0.0728 0.0250 0.0215 0.0106
21 Tri(1.0, 200.0, 399.0) Uni(0.1, 19.9) Ray(5.645) 0.0614 0.0150 0.0217 0.0114
22 Tri(1.0, 200.0, 399.0) Er(4, 2.5) Tri(0.1, 5.0, 9.9) 0.0713 0.0239 0.0410 0.0273
23 Tri(1.0, 200.0, 399.0) Tri(0.1, 10.0, 19.9) Tri(0.1, 5.0, 9.9) 0.0725 0.0249 0.0405 0.0265
24 Tri(1.0, 200.0, 399.0) Uni(0.1, 19.9) Tri(0.1, 5.0, 9.9) 0.0523 0.0052 0.0418 0.0277
25 Tri(1.0, 200.0, 399.0) Er(4, 2.5) Uni(0.1, 9.9) 0.0709 0.0237 0.0343 0.0212
26 Tri(1.0, 200.0, 399.0) Tri(0.1, 10.0, 19.9) Uni(0.1, 9.9) 0.0717 0.0238 0.0356 0.0219
27 Tri(1.0, 200.0, 399.0) Uni(0.1, 19.9) Uni(0.1, 9.9) 0.0618 0.0146 0.0296 0.0163
28 Tri(1.0, 200.0, 399.0) Er(4, 2.5) Weib(3.0, 5.6) 0.0718 0.0247 0.0437 0.0290
29 Tri(1.0, 200.0, 399.0) Tri(0.1, 10.0, 19.9) Weib(3.0, 5.6) 0.0721 0.0246 0.0431 0.0286
30 Tri(1.0, 200.0, 399.0) Uni(0.1, 19.9) Weib(3.0, 5.6) 0.0519 0.0037 0.0438 0.0288
31 Uni(1.0, 399.0) Er(4, 2.5) Er(5, 1.0) 0.0737 0.0259 0.0453 0.0297
32 Uni(1.0, 399.0) Tri(0.1, 10.0, 19.9) Er(5, 1.0) 0.0675 0.0201 0.0459 0.0304
33 Uni(1.0, 399.0) Uni(0.1, 19.9) Er(5, 1.0) 0.0630 0.0158 0.0457 0.0306
34 Uni(1.0, 399.0) Er(4, 2.5) Ray(5.645) 0.0742 0.0260 0.0243 0.0127
35 Uni(1.0, 399.0) Tri(0.1, 10.0, 19.9) Ray(5.645) 0.0737 0.0258 0.0234 0.0123
36 Uni(1.0, 399.0) Uni(0.1, 19.9) Ray(5.645) 0.0637 0.0167 0.0233 0.0133
37 Uni(1.0, 399.0) Er(4, 2.5) Tri(0.1, 5.0, 9.9) 0.0751 0.0276 0.0435 0.0298
38 Uni(1.0, 399.0) Tri(0.1, 10.0, 19.9) Tri(0.1, 5.0, 9.9) 0.0745 0.0269 0.0440 0.0300
39 Uni(1.0, 399.0) Uni(0.1, 19.9) Tri(0.1, 5.0, 9.9) 0.0634 0.0155 0.0444 0.0300
40 Uni(1.0, 399.0) Er(4, 2.5) Uni(0.1, 9.9) 0.0749 0.0277 0.0369 0.0255
41 Uni(1.0, 399.0) Tri(0.1, 10.0, 19.9) Uni(0.1, 9.9) 0.0749 0.0270 0.0356 0.0219
42 Uni(1.0, 399.0) Uni(0.1, 19.9) Uni(0.1, 9.9) 0.0634 0.0165 0.0379 0.0252
43 Uni(1.0, 399.0) Er(4, 2.5) Weib(3.0, 5.6) 0.0728 0.0257 0.0458 0.0311
44 Uni(1.0, 399.0) Tri(0.1, 10.0, 19.9) Weib(3.0, 5.6) 0.0746 0.0270 0.0464 0.0319
45 Uni(1.0, 399.0) Uni(0.1, 19.9) Weib(3.0, 5.6) 0.0648 0.0161 0.0469 0.0319

range of the sensors in order to maximize network lifetime, subject to an upper limit on the pro-

portion of query failures. Here too, our approximations can be used, in lieu of a simulation model,

to quickly evaluate alternative solutions. For such purposes, an average deviation on the order of

0.0237 is tolerable. The results of this section are significant because they provide empirical evi-

dence that the approximations are not heavily influenced by the Poisson arrival assumption imposed

at the event tables and the transmission queues. This hypothesis is also supported theoretically in
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that the arrival streams at the event tables and transmission queues are superpositions of multiple

independent sources. Albin [7] argued that such superpositions are well approximated by a Poisson

process if the number of sources is large (say 10 or more), and the traffic intensity (the traffic

arrival rate multiplied by the expected service time) at the node is light or moderate. However,

the approximation can be poor if the traffic intensity is high, even if the number of sources is large.

We conjecture that the Poisson assumption is adequate here because N is large, and the rates at

which events are witnessed and/or queries are generated are moderate.

Example 4: Irregular topologies: In previous examples, the sensor field was assumed to be a

square shape region. In this example, we explore the impact of boundaries and topology on the

performance of approximations. We present results for a 1000-node wireless sensor network with

nodes distributed randomly in an L-shape (see Figure 9a) and in a square with a hole (SH)-shape

(see Figure 9b) sensor field. The node density is ψ ≈ 9.00× 10−5 nodes per square meter in both

examples.
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(a) L-shape deployment region.
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(b) SH-shape deployment region.

Figure 9: Graphical depiction of irregular deployment regions (R).

Example 4a: 1000-Node L-Shape Network: Table 7 summarizes the MAD in the proportion

of time uninformed using 350m, 500m, 1000m, 5000m transmission ranges. The maximum absolute

deviation for the proportion of time uninformed is less than 0.062 for r = ∞, and it is reduced to, at

most, 0.008 when the revisiting effect is included. Revisiting effect is more pronounced in irregular

topologies when the transmission range is small because boundary conditions are more significant.

Figure 10 reveals that the finite range approximation is superior for small range values and the

results are consistent for all TTL values. For larger ranges, both approximations are matching the

OPNET simulation values.
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Table 7: MAD in the proportion of time uninformed (Dπ) when N = 1000 in L-shape deployment area.

Query lifetime
350m 500m 1000m 5000m

r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞
Exponential(0.2) 0.0616 0.0056 0.0396 0.0073 0.0166 0.0029 0.0082 0.0042

Triangular(0.1, 5.0, 9.9) 0.0624 0.0094 0.0374 0.0055 0.0152 0.0027 0.0086 0.0054

Uniform(0.1, 9.9) 0.0623 0.0076 0.0404 0.0088 0.0149 0.0032 0.0091 0.0047

Rayleigh(5.645) 0.0610 0.0068 0.0385 0.0061 0.0140 0.0037 0.0069 0.0037

Weibull(3.0, 5.6) 0.0604 0.0073 0.0410 0.0074 0.0147 0.0028 0.0078 0.0038

Figure 10: Comparison of π0 values with uniform query lifetimes (N = 1000, L-Shape): (-) OPNET; (o) r = ∞;
(+) r < ∞.
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Table 8: MAD in the proportion of failed queries (D∆) when N = 1000 in L-shape deployment area.

Query lifetime
350m 500m 1000m 5000m

r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞
Exponential(0.2) 0.0422 0.0297 0.0200 0.0132 0.0068 0.0042 0.0074 0.0045

Triangular(0.1, 5.0, 9.9) 0.0542 0.0367 0.0276 0.0199 0.0096 0.0090 0.0049 0.0008

Uniform(0.1, 9.9) 0.0457 0.0304 0.0225 0.0163 0.0075 0.0068 0.0080 0.0031

Rayleigh(5.645) 0.0312 0.0183 0.0091 0.0091 0.0188 0.0182 0.0284 0.0238

Weibull(3.0, 5.6) 0.0580 0.0400 0.0283 0.0195 0.0102 0.0091 0.0032 0.0014

Figure 11: Comparison of ∆ values with uniform query lifetimes (N = 1000, L-Shape): (-) OPNET; (o) r = ∞;
(+) r < ∞.
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Table 9: MAD in the proportion of time uninformed (Dπ) when N = 1000 in SH-shape deployment area.

Query lifetime
350m 500m 1000m 5000m

r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞
Exponential(0.2) 0.0615 0.0088 0.0367 0.0078 0.0133 0.0027 0.0026 0.0057

Triangular(0.1, 5.0, 9.9) 0.0602 0.0081 0.0363 0.0070 0.0156 0.0028 0.0032 0.0058

Uniform(0.1, 9.9) 0.0616 0.0091 0.0376 0.0070 0.0140 0.0041 0.0029 0.0070

Rayleigh(5.645) 0.0614 0.0089 0.0401 0.0090 0.0133 0.0034 0.0028 0.0050

Weibull(3.0, 5.6) 0.0594 0.0083 0.0380 0.0080 0.0157 0.0030 0.0023 0.0063

We compare the maximum absolute deviation of the proportion of query failures in Table 8. The

performance of the finite range approximation is slightly superior than the infinite range version

when the transmission range is small and the maximum deviation values are less than 0.0542. On

the other hand, the deviation reduces up to 0.028 for larger ranges. Figure 11 graphically depicts

the MAD of the uniform lifetime distribution for the 350m, 500m, 1000m, 5000m transmission

range cases.

Example 4b: 1000-Node Square with a Hole (SH)-Shape Network: Here, we present

results for a 1000-node wireless sensor network with nodes distributed randomly in a SH-shape

sensor field (see Figure 9b). Similar to the L-shape example, the node density is ψ ≈ 9.00 ×
10−5 nodes per square meter. In this example, the effect of revisiting effect is expected to be

significant because the boundary conditions are more substantial. Table 9 shows that the MAD in

proportion of time uninformed is improved when the finite-range approximation is used, especially

for small transmission range values. Because queries are more likely to revisit neighbors when the

transmission range is small and boundary conditions are more pronounced. Figure 12 graphically

depicts the simulated and approximated values of π0 for triangular distributed query lifetimes and

reveals that in the worst case (350m), the MAD is less than 0.0602 and 0.0081 for r = ∞ and

r < ∞, respectively.
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Figure 12: Comparison of π0 values with triangular query lifetimes (N = 1000, SH-Shape): (-) OPNET; (o) r = ∞;
(+) r < ∞.

Table 10: MAD in the proportion of failed queries (D∆) when N = 1000 in SH-shape deployment area.

Query lifetime
350m 500m 1000m 5000m

r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞ r = ∞ r < ∞
Exponential(0.2) 0.0423 0.0290 0.0197 0.0127 0.0056 0.0031 0.0041 0.0012

Triangular(0.1, 5.0, 9.9) 0.0513 0.0357 0.0240 0.0176 0.0067 0.0084 0.0020 0.0044

Uniform(0.1, 9.9) 0.0448 0.0307 0.0204 0.0148 0.0058 0.0049 0.0052 0.0026

Rayleigh(5.645) 0.0306 0.0182 0.0073 0.0103 0.0205 0.0192 0.0254 0.0208

Weibull(3.0, 5.6) 0.0553 0.0377 0.0274 0.0192 0.0082 0.0075 0.0031 0.0039
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Figure 13: Comparison of ∆ values with triangular query lifetimes (N = 1000, SH-Shape): (-) OPNET; (o) r = ∞;
(+) r < ∞.

The maximum absolute deviation in proportion of query failures are summarized in Table 10.

In the worst case, the MAD in proportion of query failures is 0.0553 and it is reduced to 0.0377

when the finite transmission range is used. The results are consistent for exponential and non-

exponential query lifetimes. Figure 13 depicts the depicts performance of the approximations when

the query lifetime follows a triangular distribution. We see some discrepancies however the MAD

in proportion of query failures is less than 0.0513.

This section has demonstrated that the approximations of Sections 2.2 and 2.3 are remarkably

accurate, even when some key model assumptions are violated. Moreover, for each instance, the

approximated proportion of time uninformed and proportion of query failures were computed in

less than 20 minutes as compared to the OPNET simulation results, which required a minimum of

2 hours.
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3.0 MAXIMIZING THE LIFETIME OF A WSN

All of the measures of network lifetime mentioned in Chapter 2 are strongly correlated with the func-

tionality of the sensor nodes which are failure prone due to energy depletion and/or environmental

effects. (Our focus here is on failures due to energy depletion.) Furthermore, in many applications,

the sensed information is time-sensitive; i.e., deadlines are imposed on significant witnessed events

and on query packets transmitted throughout the network. To ensure the timely delivery of critical

data or resources, it may be necessary to adjust network parameters (e.g., increasing the trans-

mission range of nodes) at the expense of increased energy consumption. However, there exists a

delicate tradeoff between meeting the performance requirements of the network and prolonging its

useful lifetime by expeditious use of its energy reserves. The main purpose of this chapter is to

formulate and solve optimization models for maximizing the lifetime of a WSN that detects and

transmits time-critical data. Of particular concern is the problem of selecting a common transmis-

sion range for all of the sensor nodes, the resource replication level (or time-to-live counter) and

the active/sleep schedule of nodes while satisfying connectivity and quality-of-service constraints.

In our context, the network is no longer functional if it either fails to meet the QoS requirement or

it becomes disconnected.

Remarkable energy savings can be achieved by turning-off the communication capability (radio)

of a node during idle time-slots (see [5, 97, 103]). Two distinguished modes of a node are “sleep”

and “active”. When a node is in active mode, it performs all of its duties; when it is in sleep mode,

it continues sensing the environment but does not communicate with other nodes to conserve

energy. However, energy is conserved at the expense of network throughput capacity and increased

response time. Niyato and Hossain [80] developed a queueing model to investigate the performance

of different sleep and wake-up strategies. Chiasserini et al. [27] developed a fluid model to analyze

WSNs with a random sleep scheme, where at a given time instant there is a certain probability

for an arbitrary node to be active. Liu et al. [69] developed a queuing model-based framework
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to study the interaction between random sleep schemes and packet delivery delay, and network

throughput as a measure of network performance. Active/sleep schedules are further studied in

[47, 90, 102, 24]. Ha et al. [47] developed an integer linear programming model based on a network

flow model to schedule the active/sleep modes that satisfy a network coverage constraint. Sarkar

and Cruz [90] proposed a dynamic programming formulation to numerically solve the problem of

selecting optimal sleep times and durations, subject to an average delay constraint. Turkogullari

et al. [102] developed a mixed integer linear programming model to maximize network lifetime

by simultaneously setting sleep schedules, sensor locations and data routing, and they proposed

heuristic solution algorithms. They concluded that, by simultaneously considering sleep schedules,

node placement and routing protocols in a single model, the network lifetime can be substantially

improved. Cerulli et al. [24] developed an exact column generation algorithm to maximize the

network lifetime by determining subsets of sensors that can cover an entire set of targets in the

sensor field and assigning the activation times of the covering sets. They also assume the sensing

range is adjustable. Our work here differs from these prior models in that we focus our attention on

network operating parameters that significantly influence the quality-of-service and average lifetime

of the network. Specifically, we consider the impact of transmission range, the time-to-live (or hop)

counter of event packets and active/sleep schedules for the nodes of the network. We explain each

of these aspects in what follows.

The maximum one-hop transmission distance of a node is called its transmission range. Chen et

al. [26] and Deng et al. [33] determined the optimal transmission range of all nodes that minimizes

the total network energy expenditure and showed the impact of transmission range on WSN lifetime

using a general energy consumption model. They showed that a larger transmission range decreases

response time at the expense of higher energy consumption. Gao et al. [42] showed on a simple

linear network (i.e., a WSN in which sensor nodes are arranged in a serial configuration) that energy

expenditure can be reduced significantly if the transmission range is updated when the network

node density changes due to the nodes’ active/sleep schedules. Ata [12] considered the problem

of dynamically choosing the transmission rate in a general wireless communications network such

that the average energy consumption per time unit is minimized, subject to a QoS constraint. In

that work, the transmission queue was modeled as a finite-buffer, M/M/1 queueing system. Aneja

et al. [10] presented three model formulations to assign transmission power (transmission range

indirectly) to each node such that there exists a (directed) path between each pair of sensor nodes.
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A branch-and-cut algorithm was developed and its performance was evaluated empirically using a

network with up to 150 nodes.

While some of the existing research to date has focused on adjusting the transmission range and

active/sleep schedules of nodes to maximize the network lifetime, no existing studies simultane-

ously consider the selection of the transmission range, time-to-live counter, and node active/sleep

schedules while taking into account the energy expended by the nodes’ batteries. Moreover, (with

the exception of [76, 32]) none of the existing models accounts explicitly for the limited lifetimes of

event or query packets. The primary objective of this chapter is to formulate optimization models

to maximize the number of consecutive time periods in which a query-based WSN simultaneously

satisfies QoS and connectivity requirements by optimally selecting the transmission range, time-

to-live counter and node active/sleep schedules for each period in a finite planning horizon. The

optimal parameter values within each period are selected a priori by solving a linearized version

of a nonlinear mixed integer programming model. We also derive a proxy for the probability that

the network is connected by considering the border effects of a square deployment region. Finally,

we examine a special case of the model that does not consider active/sleep decisions and show that

the solution to this problem can be obtained by solving a sequence of single-period models.

The remainder of the chapter is organized as follows. Section 3.1 describes the WSN model,

introduces essential notation and presents the QoS and connectivity constraints. By considering

the border effects of a square deployment region, we also provide an approximation for the network

connectivity probability. Section 3.1 concludes by presenting the formal nonlinear mixed integer

programming model. Section 3.2 presents a linearized version of the model that is amenable to

solution by a commercial solver (such as CPLEX [29]). In Section 3.3, we discuss a special case

of the main model in which alive nodes are always in active mode. For this case, we present a

simple algorithm for solving a sequence of single-period problems to obtain the optimal solution.

Section 3.4 presents computational experiments that illustrate the advantages of optimizing the

network parameter values.

3.1 OPTIMIZATION MODEL DESCRIPTION

As in Chapter 2, we assume that event agents are transmitted from node-to-node via a random walk

until either the witnessed event expires (i.e., it reaches its deadline), or it exhausts its time-to-live
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counter. Our model assumes that nodes transmit to a randomly selected node from the set of nodes

within its transmission range. Nodes can also generate queries to request data or resources from

the network. Recall that if a query cannot locate an informed node before its designated query

lifetime expires, the query is said to have failed. The total proportion of generated queries that are

not answered on time, i.e., the limiting proportion of query failures, is a critical QoS measure.

In addition to event agents and queries, the sensor nodes themselves have limited lifetimes. If

a node fails due to battery drain, then we say the node is failed. Otherwise, the node is said to be

alive. An alive node is either in sleep mode or active mode. When in the sleep mode, a node turns

off its sensing and communication capabilities to conserve energy (see [9]). It is very common in

dense networks to place a subset of network nodes in sleep mode for energy conversation to prolong

the lifetime of the network. However, the performance of the network can suffer when only some

of the nodes are available for sensing and forwarding event agents or query packets.

Recall that N is the number of nodes in the network. We consider a planning horizon T =

{1, 2, . . . , T} (T < ∞), where each element of T is a decision epoch and the time between two

epochs is referred to as a period (e.g., one week). At the beginning of a period, each alive node can

either switch to the sleep mode with probability (1 − pτ ), or stay active with probability pτ . We

assume that pτ is the same for all alive nodes.

In this section, we present a model to determine the transmission range (rτ ), event time-to-live

counter (`τ ), and the probability that a node is in active mode (pτ ) for each τ ∈ T = {1, 2, . . . , T}.
The following notation will be used in our model:

• A : The set of possible policy decisions.

A = {(r, `, p) : r ∈ (0, r], ` ∈ N \ {N}, p ∈ (0, 1]} ,

where r =
√
2L is the maximum distance between two nodes in the square deployment region

R;

• aτ ∈ A: The decision to make at the start of period τ . Note that the triplet aτ includes decisions

about the transmission range (rτ ), event time-to-live counter (`τ ), and the proportion of active

nodes (pτ ), i.e.,

aτ = (rτ , `τ , pτ ) ∈ A;

• sτ : The number of nodes that are alive at the start of period τ , sτ ∈ N ;
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• nτ : The expected number of active nodes at the start of period τ . To be conservative, we set

nτ = bsτpτc;

• c(sτ , aτ ): The expected battery energy expended by an active node during period τ . We assume

that in period τ , the energy expenditures of all nodes are independent and identically distributed

(i.i.d.) random variables denoted by Uτ with common mean E(Uτ ) = c(sτ , aτ ), i.e.,

c(sτ , aτ ) = (et + ed r
η
τ )λq,

where et is the energy/bit consumed by the transmitter electronics, ed accounts for energy

dissipated in the transmission, rτ is the transmission range and η is the path-loss coefficient

(see [42],[116]);

• bτ : The expected available battery energy at a node at the start of period τ . To simplify

matters, we will use the mean available energy as a proxy for the actual available energy at a

single node. An alive node (in sleep mode) does not consume energy with probability 1− pτ ;

however, it is in active mode and consumes energy with probability pτ . Therefore, the expected

available energy during period τ + 1 is obtained recursively by

bτ+1 = bτ − pτ c(sτ , aτ );

• f(sτ , aτ , bτ ): The probability that a node alive at the start of period τ fails during this period.

We assume that any active node fails at the end of period τ if the energy required during the

period exceeds the mean energy available at the start of the period. Specifically,

f(sτ , aτ , bτ ) = P(Uτ > bτ ), τ ∈ T \ {T}.

We use this probability to compute the conservative estimate

sτ+1 = bsτ − fτ (sτ , aτ , bτ )nτc,

since only active nodes can fail due to battery drain;

• xτ : The status of the network at the start of period τ .

xτ =




1, if the network is functional,

0, otherwise.

By functional, we mean that the network is connected and satisfies the QoS requirement at the

start of period τ .
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Let ∆(nτ , aτ ) be the proportion of query failures at time τ . The limiting proportion of queries

that fail to be answered on time is a critical QoS measure for query-based WSNs. We presented an

approximation for this proportion that has been show to be very accurate and fairly insensitive to

the event and query lifetime distributions in Chapter 2. It plays a crucial role in the optimization

model. The proportion of query failures is obtained by considering the limiting behavior of a single

query that is generated at an uninformed node and it is provided in Section 2.3.

The energy expended for transmitting event agents or forwarding queries serves as a proxy for

the total energy expenditure at a node since transmitting is the primary energy-consuming activity.

In the next section we first describe the expected energy expenditure.

3.1.1 Expected Energy Expenditure

Let λq(rτ , `τ , nτ ) be the total arrival rate of event agents and queries to a node’s transmission queue

in period τ . While this rate depends explicitly on r, `, and n, we will suppress this notation and

simply write λq. The energy expended for transmitting event agents or forwarding queries serves

as a proxy for the total energy expenditure at a node. An approximation for λq was derived in

Section 2.3 and is given by

λq ≈ λ

[
1− (1− α)`

α

]
+ γπ0(r)

[
2− π0(r)

1− π0(r)

]
. (3.1)

The energy expended per transmission by a node can be computed as Et = (et + edr
η), where

et is the energy/bit consumed by the transmitter electronics, ed accounts for energy dissipated

in the transmission, r is the transmission range and η is the path-loss coefficient (see [42],[116]).

Therefore, the expected energy expenditure for transmissions is

c(sτ , aτ ) = (et + ed r
η
τ )λq. (3.2)

It is important to note that, due to the dependence of λq on the decision variables rτ , `τ and nτ , the

structural properties of the function c(sτ , aτ ) (e.g., convexity, monotonicity, etc.) are not obvious.

At each time interval, in addition to the quality of service requirement, the network must always

be connected, i.e., there are no disconnected subgroups of nodes. In the next section, we provide

an approximate connectivity constraint.
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3.1.2 Approximate Connectivity Constraint

Network connectivity is obviously an important consideration for static WSNs whose nodes are

subject to failure and sleep schedules. In this subsection, we provide an approximate expression

for the probability that the network is connected. Viewing the WSN as an undirected graph,

the network is said to be connected if for each pair of nodes i, j ∈ N , there exists at least one

single- or multiple-hop path between i and j. As noted by Bettstetter [16], the connectivity of

a WSN is closely related to the number of isolated nodes in the network. A node i ∈ N is said

to be isolated if there are no other nodes within its transmission range (i.e., if its node degree is

0); the WSN contains no isolated nodes if the minimum node degree of the network is positive.

The probability that there are no isolated nodes in a random graph can be used to bound the

connectivity probability from above, and we use this fact to establish an approximate connectivity

constraint.

To frame this discussion, we adopt the following definitions and notation, similar to those used

in [16]. The WSN is a random graph G whose N stationary nodes are uniformly distributed in a

two-dimensional region R with area L, i.e., the locations of the nodes can be viewed as points in

R generated by a two-dimensional, spatial Poisson process with constant intensity (node density)

N/L. Assuming that each sensor node uses the same transmission range r, and that L À πr2, one

can ignore the border effects of R to obtain the exact probability that no node is isolated. Let E0

be the event that no node is isolated when the border effects can be ignored, and let Λ̃ be the true

probability that no node is isolated in the network. Clearly, Λ̃ ≤ P(E0) since the degrees of nodes

near the borders of R are smaller than those whose transmission areas are in the interior of R.

Let C be the event that the network is connected. Using basic results for spatially homogeneous

Poisson point processes in two dimensions (cf. Diggle [35]), Proposition 3.1 provides an upper

bound for the probability that the network is connected, P(C).

Proposition 3.1. Suppose G is an ad hoc WSN with N stationary sensor nodes distributed uni-

formly in a region of area L. Assuming each node uses the same transmission range r (r > 0), an

upper bound for the connectivity probability of the network is

P(C) ≤ Λ̃ ≤ P(E0) =
[
1− exp(−Nπr2/L)

]N
. (3.3)
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By Theorem 1 of [16], the minimum transmission range needed to ensure no isolated nodes with

probability ζ is

r ≥
√

− ln(1− ζ1/N )

πN/L
, (3.4)

or equivalently, one may choose r such that

ζ ≤ [
1− exp(−Nπr2/L)

]N
.

To simplify notation, let Λ̂1 :=
[
1− exp(−Nπr2/L)

]N
serve as an approximation for Λ̃. It is

important to note that the upper bound of (3.3) and, consequently, the lower bound of (3.4),

ignore the border effects of the deployment region. By accounting for these effects, our aim is to

derive an improved approximation for Λ̃ (call it Λ̂2), thereby providing a tighter upper bound for

P(C). Even though (3.3) provides only an upper bound for P(C), Bettstetter [17] has shown that

when Λ̃ is close to 1, the bound is in fact tight.

Let di(r) be the degree of node i ∈ N when all the nodes use transmission range r. Our

approximation is formed by partitioning R into three subareas, R1, R2 and R3, as depicted in

Figure 14a. Nodes in R1 are located at least r units away from any of the borders. Nodes in R2 are

located closer than r units to one of the borders but at least r units away from the others. Nodes

in R3 are located closer than r units to two of the borders. To simplify matters slightly, we will

use the degree of nodes in R2 to approximate the degree of nodes in R3. The expected degrees of

nodes in R1 and R2 are provided in Lemma 3.1.

Lemma 3.1. Consider a WSN with N ≥ 1 nodes. Let N1 and N2 be the set of nodes that are

located in R1 and R2, respectively. Then,

E[di(r)] ≈





Nπr2

L
, i ∈ N1,

(3π2 + 4)r2

4π
· N
L
, i ∈ N2.

Proof. Nodes in R1 are located at least r units away from any of the borders; therefore, their

transmission area is πr2, and the expected node degree is just the node density multiplied by the

area, or (N/L)πr2. Nodes in R2 are located closer than r units to the border, so they have a smaller

transmission area, leading to a smaller degree. Figures 14b and 14c illustrate the transmission area

of a node located in R2. In these two figures, no nodes are located in the shaded regions. Let

A0(i) be the area of intersection of node i’s transmission area and the network’s deployment region.

Moreover, let θi be a random variable denoting the central angle of the circle surrounding the
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(a) Partitioning the region.
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(b) The effect of R’s borders. (c) Transmission area of a node.

Figure 14: Graphical depiction of the partitioning of R and the border effects.

transmission area of node i so that θi sweeps the arc that remains of the network’s deployment

region as seen in Figure 14c. Then, for i ∈ N2

A0(i) = πr2 −
(
πr2

θi
2π

− r2 sin θi
2

)
,

and the expectation of A0(i) is

E[A0(i)] = πr2 − r2

2

∫ π

0
(u− sinu)

1

π
du

=
(3π2 + 4)r2

4π
. (3.5)

Therefore, the expected degree of a node in R2 is (N/L)[(3π2 + 4)r2]/4π.

We use (3.5) as an approximation for E[A0(i)] for each i ∈ N2 ∪ N3, where N3 is the set of

nodes located in R3. It is worth noting that a similar approach was taken in [107]; however, in

[107], the authors derive and use a bound for E[A0(i)], the expected transmission area of a node in

N2, which directly affects the result. Next, we state the probability that there is no isolated node

in the network.

Lemma 3.2 (Equation (23) of [17]). Consider a node at a given location x in the deployment area.

It is randomly placed according to p.d.f. h(x). Let g(r,x) be the expected degree of a node located

at x. Given a WSN with N ≥ 120 and πr2/L ≤ 0.08, the probability that there is no isolated node

in the network is

exp

(
−N

∫

R
e−g(r,x)h(x)dx

)
.
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Proposition 3.2. Assuming that nodes are spatially uniformly distributed in R, considering the

boundary effects, the probability that there is no isolated node in the network, Λ̃, is approximated

by

Λ̃ ≈ Λ̂2 = exp

[
−Ne−

Nπr2

L

(
(
√
L− 2r)2

L

)]
exp

[
−Ne−

N(3π2+4)r2

4πL

(
1− (

√
L− 2r)2

L

)]
. (3.6)

Proof. We employ a uniform node distribution over a finite, square deployment region R; therefore,

h(x) =
1

L
, x ∈ R.

By Lemmas 3.1 and 3.2,

Λ̂2 = exp

[
−N

(∫

R1

e−
Nπr2

L
1

L
dx+

∫

R2∪R3

e−
N(3π2+4)r2

4πL
1

L
dx

)]

= exp

[
−Ne−

Nπr2

L

(
(
√
L− 2r)2

L

)]
exp

[
−Ne−

N(3π2+4)r2

4πL

(
1− (

√
L− 2r)2

L

)]
.

We assess the quality of approximations Λ̂1 and Λ̂2 by comparing them to simulated values of Λ̃

by generating a large number of random networks. We deployed, respectively, 1000 and 5000 nodes

on a 1500 m × 1500 m region and determined if the network contains at least one isolated node

(for a given transmission range r). The experiment was replicated K times and the proportion of

networks with no isolated nodes estimated. Specifically, let Gi denote the ith generated network

and let

1(Gi) =




1, if network i has no isolated nodes,

0, if network i has at least one isolated node.

Assuming existence of the limit,

1

K

K∑

i=1

1(Gi) → Λ̃ w.p. 1

as K → ∞ by the strong law of large numbers. Therefore, for K sufficiently large, we obtain a

reasonable (relative frequency) estimate of Λ̃. For both scenarios (N = 1000 and N = 5000), and

for each selected transmission range, we randomly generated K = 104 networks. Figure 15, which

depicts the relative performance of the approximations, provides some important insights.
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(a) N = 1000 nodes.
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(b) N = 5000 nodes.

Figure 15: Comparison of Λ̃ values: (-) Simulated values; (+) approximation Λ̂1; (o) approximation

Λ̂2. Nodes deployed on a 1500 m×1500 m square region.

First, both Figures 15a and 15b indicate that the upper bound with border effects (Λ̂2) is

tighter than the one that ignores border effects (Λ̂1) for most of the transmission ranges. Second,

as expected, the approximations are close to the simulated values when Λ̃ is close to 1. This latter

observation is significant because the minimum threshold for the connectivity probability will be

set close to 1 (e.g., 0.99). Therefore, it can be argued that either approximation is suitable for

the connectivity constraint, but we prefer Λ̂2 since it exhibits better performance over the set of

transmission range values.

Finally, we let Ψ(nτ , aτ ) be the probability that the network is connected at time τ and note

that Ψ is an explicit function of nτ and rτ . Based on the empirical tests presented in this subsection,

we use the result of Proposition 3.2 to ensure the network remains connected with high probability

in the optimization model. Specifically,

Ψ(nτ , aτ ) ≈ Λ̂2 = exp

[
−nτe

−nτπr2τ
L

(
(
√
L− 2rτ )

2

L

)]

× exp

[
−nτe

−nτ (3π2+4)r2

4πL

(
1− (

√
L− 2rτ )

2

L

)]
. (3.7)

We pause here to remark that the approximation (3.7) assumes that at the start of period τ , the

node density nτ/L is constant throughout R. However, in general the node density will not be

constant as some nodes fail over time due to battery depletion, while others enter sleep mode during
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certain periods of the planning horizon. Nevertheless, we use (3.7) as the approximate connectivity

due to its tractability and the fact that it accounts for the border effects of the region. The next

subsection describes the main optimization model.

3.1.3 Optimization Model

Let ϕ be the maximum allowable proportion of query failures, ζ be the minimum allowable prob-

ability that the network is connected and b is the initial available energy at a node. In general,

ζ should be close to 1 and ϕ should be close to 0. We propose the following model to determine

the optimal transmission range, time-to-live counter and proportion of active modes (among those

that are not failed) for each decision epoch in T . We label the first formulation as problem P1.

(P1) max
T∑

τ=1

xτ (3.8a)

s.t. ∆(nτ , aτ ) ≤ ϕ+M(1− xτ ), τ ∈ T (3.8b)

Ψ(nτ , aτ ) ≥ ζ −M(1− xτ ), τ ∈ T (3.8c)

nτ ≤ sτpτ , τ ∈ T (3.8d)

sτ+1 ≤ sτ − f(sτ , aτ , bτ )nτ , τ ∈ T \ {T} (3.8e)

bτ+1 = bτ − pτc(sτ , aτ ), τ ∈ T \ {T} (3.8f)

xτ ≥ xτ+1, τ ∈ T \ {T} (3.8g)

aτ = {rτ , `τ , pτ} ∈ A, τ ∈ T (3.8h)

xτ ∈ {0, 1} , bτ ∈ [0, b], τ ∈ T (3.8i)

sτ ∈ {0, 1, . . . , N} , nτ ∈ {0, . . . , N} , τ ∈ T . (3.8j)

The objective function (3.8a) represents the number of consecutive time periods in which the

network satisfies the QoS and connectivity requirements. In constraints (3.8b) and (3.8c), M is a

large positive constant which forces xτ to assume the value 1 if and only if the QoS and connec-

tivity constraints are simultaneously satisfied in the τth period. For the sake of completeness, we

also include constraints (3.8d) and (3.8e) to set the number of active and alive nodes, respectively.

Constraint (3.8f) ensures that the expected available energy at each time period is computed consid-

ering the energy expenditures in the prior time period. Constraint (3.8g) ensures that the network

satisfies the QoS and connectivity constraints in consecutive periods. The admissible ranges of

variables are given in (3.8h) through (3.8j).
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Solving problem P1 is nontrivial for at least the following reasons. First, constraints (3.8b)

through (3.8f) are nonlinear, and the left-hand side of (3.8b) requires numerical integration. Second,

the structure of the constraints, as well as the convexity of c(sτ , aτ ) in `τ , are difficult to prove;

therefore, it is unclear if the feasible region is convex. Fortunately, this model can be viewed as a

nonlinear knapsack-like problem with additional constraints. One possible approach for addressing

this type of problem is to linearize the model (a typical example is given in [53]) and solve it using

a commercial solver (e.g., CPLEX [29]). In the next section, we show how to linearize P1 and solve

it.

3.2 LINEARIZED MODEL FOR MAXIMIZING WSN LIFETIME

In this section, we linearize problem P1 to set the transmission range (rτ ), event time-to-live

counter (`τ ) and the proportion of nodes that are in active mode (pτ ), for each τ ∈ T = {1, 2, . . . , T}.
Piecewise linear approximations of the functions c(sτ , aτ ) and f(sτ , aτ , bτ ) (see (3.8e) and (3.8f)) are

used to convert the nonlinear problem (P1) into a linear 0–1 problem. In addition to the previous

notation, we introduce the following:

• A(s) ⊂ A: For a given of number of alive nodes s, A(s) is some subset of policy decisions

{r, `, p} satisfying the following requirements:

(i) The proportion of query failures and connectivity requirements are satisfied, i.e.,

∆(n, {r, `, p}) ≤ ϕ and Ψ(n, {r, `, p}) ≥ ζ;

(ii) The transmission range is set such that the energy expenditure is minimized for a given `

and p. That is, there does not exist an r′ 6= r such that

∆(n, {r′, `, p}) ≤ ϕ,

Ψ(n, {r′, `, p}) ≥ ζ,

c(s, {r′, `, p}) < c(s, {r, `, p}).

Model parameters:

• csa: The expected energy expenditure at an alive node for a ∈ A(s) and s ∈ N , i.e.,

csa = c(s, a), where a = {r, `, p} ∈ A(s);
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Figure 16: Discretization of the interval [0, b].

• uj , j ∈ J = {1, 2, . . . , B}, where B is a finite positive integer so that |J | < ∞: A split-point

in [0, b] to discretize the interval in which the expected available energy is defined. Note that

uj < uj+1 and uj+1−uj is assumed to be small enough to ensure that, for any given a ∈ A(s) and

s ∈ N , the number of failed nodes is constant for bτ ∈ [uj , uj+1). Moreover, u1 = 0 and u|J | = b.

Figure 16 depicts the relationship of uj values to the node failures for a given a ∈ A(s) and

s ∈ N , which is denoted by mτ
sa (see the definition of mτ

sa that follows);

• ksaj : The number of nodes that fail when number of alive nodes is s, the policy decision is a

and bτ ∈ [uj , uj+1). Note that the expected number of nodes failed is used as a proxy for this

variable, i.e., ksaj = spf(s, a, uj), for a ∈ A(s);

Model variables:

• yτsa: A binary variable to set the policy decisions, i.e., for τ ∈ T , a ∈ A(s) and s ∈ N

yτsa =




1, if aτ = a and sτ = s,

0, otherwise;

• zτj : A binary variable to set the expected available energy, i.e., for τ ∈ T and j ∈ J

zτj =




1, if uj ≤ bτ < uj+1,

0, otherwise;

(3.9)
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• mτ
sa: An integer variable to set the number of nodes failed in the τth period, i.e.,

mτ
sa =




ksaj , if yτsa = 1 and zτj = 1,

0, otherwise.

Using these variables, we next present a mixed integer linear model to determine the optimal

transmission range, time-to-live counter and proportion of active modes (among those that are

alive) for each time in T . We label this as Problem P2.

(P2) max
T∑

τ=1

xτ (3.10a)

s.t.
∑
τ

∑

s∈N

∑

a∈A(s)

csay
τ
sa ≤ b (3.10b)

∑

a∈A(s)

yτsa = xτ , τ ∈ T (3.10c)

xτ+1 ≤ xτ , τ ∈ T \ {T} (3.10d)

mτ
sa ≤ syτsa, τ ∈ T , s ∈ N , a ∈ A(s) (3.10e)

mτ
sa ≥

∑

j∈J
ksajz

τ
j − s (1− yτsa) , τ ∈ T , s ∈ N , a ∈ A(s) (3.10f)

mτ
sa ≤

∑

j∈J
ksajz

τ
j , τ ∈ T , s ∈ N , a ∈ A(s) (3.10g)

∑

a∈A(s)

sy1sa = N (3.10h)

∑

s∈N ,
a∈A(s)

s yτsa ≤
∑

s∈N ,
a∈A(s)

(syτ−1
sa −mτ−1

sa ), τ ∈ T \ {1} (3.10i)

b1 = b, (3.10j)

bτ = bτ−1 −
∑

s∈N ,
a∈A(s)

csay
τ−1
sa , τ ∈ T \ {1} (3.10k)

bτ ≥
∑

j∈J
ujz

τ
j , τ ∈ T (3.10l)

∑

j∈J
zτj = 1, τ ∈ T (3.10m)

xτ ∈ {0, 1} , bτ ∈ [0, b], τ ∈ T (3.10n)

yτsa ∈ {0, 1} , τ ∈ T , s ∈ N , a ∈ A(s) (3.10o)

zτj ∈ {0, 1} , τ ∈ T , j ∈ J (3.10p)

mτ
sa ∈ {0, 1, . . . , s}, τ ∈ T , s ∈ N , a ∈ A(s) (3.10q)
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The objective function (3.10a) of P2 is the same as (3.8a) in P1. For the sake of completeness,

we also include constraint (3.10b) to account for the limit on remaining useful battery life. With

constraint (3.10c), xτ is forced to be 1 if and only if there is a feasible policy in the τth period.

Constraint (3.10d) (which mirrors constraint (3.8g) of problemP1) ensures that the network satisfies

the QoS and connectivity requirements in consecutive periods. Constraints (3.10e), (3.10f) and

(3.10g) ensure that the number of node failures in the τth period is set. With constraints (3.10h)

and (3.10i), node failures due to energy depletion are accounted for, and the number of alive nodes

remaining in the network can be restricted. With constraints (3.10j) and (3.10k), the remaining

available energy at a node in the τth period is determined. With constraints (3.10l) and (3.10m), zτj

is forced to be 1 to satisfy (3.9). The admissible ranges of variables are set in (3.10n) through (3.10q).

Before presenting numerical results for problem P2, we first discuss a simplified version of P1 in

Section 3.3.

3.3 A SPECIAL CASE

When all alive sensor nodes are active for all time periods, i.e., pτ = 1, for all τ ∈ T , we can solve a

single-period model to determine the optimal transmission range and time-to-live counter for each

period that maximizes the network’s lifetime. In this section, we have the following assumptions

for each τ :

A1. ∆(nτ , aτ ) is nonincreasing in nτ ;

A2. Ψ(nτ , aτ ) is increasing in nτ .

The former assumption can be explained by the revisiting effect, such that the probability that

a query or an event agent revisits a node can be significant. This revisiting effect increases the

proportion of time nodes are uninformed, the time to locate an informed node, and consequently,

the proportion of failed queries (see [32]). As the number of active nodes increases, the revisiting

effect is less pronounced. The latter assumption can be intuitively justified; however, we provide a

sufficient condition using (3.7).

Proposition 3.3. Assumption A2 holds when
√
L > 2rτ and

nτ

(
4 + 3π2

)
r2τ

4Lπ
≥ 1. (3.11)
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Proof. First note that when (3.11) holds,

1 ≤ nτ

(
4 + 3π2

)
r2τ

4Lπ
=

nτr
2
τ

Lπ
+

3nτπr
2
τ

4L
<

nτπr
2
τ

4L
+

3nτπr
2
τ

4L
=

nτπr
2
τ

L
.

Therefore, using (3.7),

∂Ψ(nτ , aτ )

∂nτ
= exp


−e−

nτ(4+3π2)r2τ
4Lπ nτ


1−

(√
L− 2rτ

)2

L


−

e−
nτπr2τ

L nτ

(√
L− 2rτ

)2

L




×


−e−

nτ(4+3π2)r2τ
4Lπ


1−

(√
L− 2rτ

)2

L




(
1− nτ

(
4 + 3π2

)
r2τ

4Lπ

)

−e−
nτπr2τ

L




(√
L− 2rτ

)2

L




(
1− nτπr

2
τ

L

)

 ≥ 0.

Therefore, Ψ(nτ , aτ ) is increasing in nτ .

Note that the condition
√
L > 2rτ is usually met in practice since the sensor transmission range

is relatively small compared to the sensor field dimensions. We can interpret (3.11) as follows: If

the expected node degree of the nodes in R2 is at least unity, then assumption A2 holds.

By these assumptions, the optimal solution of P1 is obtained when the number of active nodes

for each τ ∈ T is maximized. This can be achieved by sequentially solving the following energy

minimization problem (the single-period model) for each time τ ∈ T .

(P3) min c(nτ , {rτ , `τ , 1})

s.t. ∆(nτ , {rτ , `τ , 1}) ≤ ϕ

Ψ(nτ , {rτ , `τ , 1}) ≥ ζ

{rτ , `τ , 1} ∈ A.

Note that after solving the above model for each τ ∈ T , both the number of alive nodes and

available energy must be updated as follows:

nτ+1 = bnτ − fτ (nτ , aτ , bτ )nτc, τ ∈ T \ {T}

bτ+1 = bτ − c(nτ , aτ ), τ ∈ T \ {T}.

The optimal solution of problem P3 can be obtained by exhaustive enumeration. However, we

propose an algorithm which is significantly more efficient than exhaustive enumeration. In addition

to assumptions A1 and A2 we impose the following assumptions for each τ :
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A3. cτ (nτ , aτ ) is continuous and increasing in rτ ;

A4. ∆(nτ , aτ ) is decreasing in `τ ;

A5. ∆(nτ , aτ ) is decreasing in rτ ;

A6. Ψ(nτ , aτ ) is increasing in rτ .

Unfortunately, assumptions A1 through A6 are difficult to prove analytically because the structures

of cτ (nτ , aτ ), ∆(nτ , aτ ) and Ψ(nτ , aτ ) are unknown. However, after extensive empirical testing us-

ing (3.2), (2.21) and (3.6), we have failed to identify a case in which these assumptions are violated.

We propose the following algorithm to solve P3:

Step 0: Initialize

τ := 1; bτ := b; r0 := 0;

Step 1: Check for optimal solution

rmin := min {r : rτ−1 ≤ r ≤ r, Ψ(nτ , {r, 0, 1}) ≥ ζ} ;
`′ := argmin {c(nτ , {rmin, `, 1}) : ` ∈ {1, . . . , nτ − 1}, ∆(nτ , {rmin, `, 1}) ≤ ϕ};
If ∃ `′, then

`τ := `′; rτ := rmin;

c∗ := c(nτ , {rτ , `τ , 1});
Go to Step 3.

Else

` := nτ − 1; c∗ := M ;

Go to Step 2.

Step 2: Search for optimal solution

r′ := argmin {c(nτ , {r, `, 1}) : rmin ≤ r ≤ r, ∆(nτ , {r, `, 1}) ≤ ϕ};
If ∃ r′, then

If c(nτ , {r′, `, 1}) < c∗

`∗ := `; r∗ = r′;

c∗ := c(nτ , {r′, `, 1});
rmin := r′; ` = `− 1;

Go to Step 2.

Else

`τ := `∗; rτ := r∗;
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Go to Step 3.

Step 3: Check for feasibility

If c∗ ≤ bτ , then

xτ := 1; bτ+1 := bτ − c∗;

τ := τ + 1;

Go to Step 1.

Else

xτ := 0,

End.

In Step 1 of the algorithm, rmin is fixed considering the connectivity constraint, and if c(nτ , {rmin, `, 1})
is convex in `, then a simple bisection algorithm can be used to search for an ` that satisfies the

QoS constraint. If there exists an `′ for given rmin, then the solution is optimal due to assumptions

A3 and A6.

On the other hand, if there does not exist an `′, then we set ` = nτ − 1, because in this case,

∆(nτ , {r, `, 1}) is minimized for any given r by A4. Therefore, if there exists a feasible solution

for the problem, it can be obtained at ` = nτ − 1. In Step 2, a simple bisection algorithm can

be used to search for an r that satisfies both the QoS and connectivity constraints. In this step,

` is decremented by 1. By A4 and A5, in order to maintain feasibility, we have rmin ≤ r. Note

that ` is decremented until there is no feasible (`, r) that simultaneously satisfies the QoS and

connectivity constraints. In this algorithm, we make use of the structural properties assumed in

A3–A6, hence, set of admissible values for r is made smaller at each iteration of Step 2. Therefore,

the performance of the algorithm is improved as compared to exhaustive enumeration.

3.4 COMPUTATIONAL EXPERIMENTS

3.4.1 Description of Experiments

In this section, we explore the effect of the optimal choices of transmission range, time-to-live

counter and active/sleep schedules on WSN lifetime. To see the significance of parameter settings

for each period, we compare four cases on a network with N nodes (N ∈ {600, 700, 800, 900, 1000})
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deployed randomly on a two-dimensional sensor field with node density 6.25× 10−3 nodes/m2 (cf.

[25]). The four cases we consider are as follows:

1. Optimized/Optimized (OO): optimized transmission range, active/sleep decisions and re-

source replication level for each period of the planning horizon;

2. Fixed/Optimized (FO): fixed transmission range, optimized active/sleep decisions and re-

source replication level for each period of the planning horizon;

3. Optimized/Fixed (OF): optimized transmission range and resource replication level for each

period of the planning horizon and sensor nodes are always active;

4. Fixed/Fixed (FF): fixed transmission range, sensor nodes are always active and optimized

resource replication level.

For each of these four cases, the optimal time-to-live counter (`) is selected for each time period.

Although scenarios OO, FO and OF are termed optimal, it is important to note that the optimal

decisions for each time period are made a priori – not dynamically. Nonetheless, these decisions do,

in fact, account for the time-varying topology of the network due to sensor node battery depletion.

In cases FO and FF, the transmission range is fixed at its minimum value that is chosen when the

transmission range is optimized for each time period.

In the test instances, we assume each node initially has 10 Joules (J) of battery energy (cf.

[25]). The node energy expenditures in the τth period are assumed to be i.i.d. truncated normal

random variables (Tr-N) with mean c(sτ , aτ ) and standard deviation σ. Typical values for currently

available radio transceivers are et = 50 × 10−9 J/bit, ed = 100 × 10−12 J/bit/m2 (cf. [42, 116]),

and η = 2 (path-loss coefficient). The length of each period in the optimization model is one

unit of time (e.g., one week). To analyze the effect of the variance of energy expenditure, we also

compare the network lifetimes of four cases when σ ∈ {0.2, 0.4, . . . , 2.0}. Larger dispersion of the

energy expenditures values is likely to prevail due to a nonhomogeneous environment, or if some

nodes serve as relays more frequently than others. For the test instances, the parameter values are

summarized in Table 13. In all test instances, the event and query lifetimes follow triangular and

uniform distributions, respectively.

The analytical approximations were coded in the C programming language and executed in

Microsoft
R©

Visual Studio
R©

2008 on a personal computer equipped with an Intel
R©

CoreTM 2 Duo

CPU operating at 3.00GHz with 2.00 GB of RAM.
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Table 11: Parameter values for the test instances.

Parameter description Value

Transmitter’s exponential transmission rate 5.000

Poisson rate of locally-witnessed events 0.012

Poisson rate of locally-generated queries 0.050

Event lifetime distribution Tri(0.1, 10.0, 19.9)

Query lifetime distribution U(0.1, 9.9)

Energy expenditure during the τth period Tr-N(cτ (nτ , aτ ), σ
2)

Proportion of query failure limit (ϕ) 0.025

Minimum probability of being connected (ζ) 0.99

Planning horizon (T ) {1, 2, . . . , 20}

For these test instances, the optimal solution of P2 is an approximate solution because both

∆(nτ , aτ ) and Ψ(nτ , aτ ) are evaluated using approximations given in (2.21) and (3.6), respectively.

Therefore, for computational expedience, P2 can be solved by considering only a subset of the

policy alternatives without significant effect on the quality of solutions obtained. Consequently, we

allow sτ to assume only one of 20 integer values between 0 and N . Similarly, nτ may assume one

of 10 integer values between 0 and sτ .

3.4.2 Results and Discussion

Figure 17a shows the effect of adjusting transmission range and sleep schedules on the number of

alive nodes over time when N = 1000. When the transmission range and active/sleep decisions

are fixed over time, the number of alive nodes in the network decreases rapidly. When either one

of transmission range and active/sleep decisions is optimized for each period, the node failure rate

is smaller than the case when the decisions are static. On the other hand, when the transmission

range and the active/sleep schedules are optimized, the network lifetime increases, because nodes

fail with a smaller rate over time. Additionally, when the transmission range and sleep schedules are

optimized considering node failures, the network satisfies the QoS and connectivity requirements

even after many nodes fail. Similar results are observed when N ∈ {600, 700, 800, 900}.
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Table 12: Average lifetime over 10 test instances.

N OO FO OF FF

600 27.4 17.1 12.9 10.9

700 27.8 13.6 13.3 10.5

800 18.6 15.3 10.8 10.8

900 26.9 13.4 12.9 10.5

1000 24.0 15.3 12.9 10.8

The results summarized in Table 12 are the average lifetimes of 10 cases, where the standard

deviation varies from 0.2 to 2.0. This table illustrates the significant effect of optimized decisions

and reveals that for different sizes of networks, setting optimal transmission range and active/sleep

decisions increases the average network lifetime.

Figure 17b reveals some very interesting results. First, we observe that making the transmission

range and active/sleep decisions in each period of the planning horizon is superior to the other

cases in terms of the average maximum network lifetime for almost all of the standard deviation

values. Second, the network lifetime decreases as the standard deviation of the energy expenditure
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Figure 17: Effect of optimal decisions on network lifetime.

78



increases. One possible explanation for the reduced network lifetime is that, as the variance of

energy expenditure increases, a greater proportion of nodes can experience failure times that are

significantly smaller than the mean failure time, thereby increasing the instances in which the

connectivity and/or QoS constraints are violated early in the planning horizon.
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4.0 CLUSTER HEAD LOCATION AND RELOCATION IN MOBILE WSNS

One strategy for dealing with limited energy storage in WSNs is to allow the sensor nodes to

aggregate sensed data at a particular node (or set of nodes) in the network known as cluster heads.

A cluster head typically possesses a larger energy supply and larger transmission range than other

nodes in the network (see [112]) and is responsible for aggregating and disseminating data received

from sensors within its own cluster. Therefore, two important design issues emerge when cluster

heads are used: (1) where should cluster heads be located in a particular region; and (2) how

should the sensor nodes be assigned to cluster heads, given that the positions of the sensors evolve

dynamically over time? This problem is further complicated by the fact that communication

links between sensor nodes and their cluster heads may be destroyed due to a harsh operating

environment or attacks on the network by an adversary (e.g., in a military theater). However,

by optimally clustering the sensor nodes and dynamically locating cluster heads, it is possible to

ensure that each sensor is within a single hop of at least one cluster head.

The problem of clustering sensor nodes in a WSN has been analyzed from a variety of per-

spectives including load balancing, fault-tolerance, connectivity, maximizing network lifetime and

cluster count, to name only a few. Some useful survey papers related to clustering in WSNs include

Liu and Shi [70], Kumar et al. [67], Younis et al. [112] and Abbasi et al. [1]. Liu and Shi [70] sur-

veyed popular clustering algorithms and categorized them into three groups: cluster head election

algorithms, cluster formation and data transmission. In this chapter, the most commonly discussed

clustering approaches are classified as: (1) decentralized (distributed) algorithms, (2) centralized

algorithms, or (3) optimization methods.

Low Energy Adaptive Clustering Hierarchy (LEACH) [51] is one of the most popular cluster-

ing algorithms that uses a distributed algorithm in which cluster heads are selected and rotated

randomly to balance the energy expenditure among the sensors in the network. A node becomes

a cluster head with a certain probability, which is assigned by the algorithm. LEACH assumes
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that all sensor locations are known and the number of clusters in the network is fixed a-priori

in the algorithm. In the Hybrid Energy Efficient Distributed (HEED) clustering algorithm [111]

and Time Delay Based Clustering (TDC) algorithm [117], cluster heads are selected based on their

residual energy, and explicit sensor location information is not required. However, the optimal se-

lection of cluster heads is not guaranteed. In HEED [111], intra-cluster communication costs – the

energy expenditure due to communication from a sensor to its cluster head – are not considered,

while Ding et al. [37] proposed DWEHC, a distributed clustering algorithm, that does consider

the intra-communication costs. Yu et al. [115] also presented a clustering algorithm for large-scale

networks that minimizes both intra- and inter-cluster communications. Xia and Vlajic [106] and

Manisekaran et al. [74] developed algorithms wherein the similarity of sensor readings is used as

the main clustering criterion to minimize the in-network data reporting traffic. Dimoskas et al.

[36] considered the significance of a sensor with respect to its contribution in relaying messages as

a metric for clustering. Koucheryavy and Salim [63] developed a combined criteria metric accord-

ing to connectivity, coverage, mobility and residual energy and their distributed algorithm uses

predicted values of their combined metric. Each of these techniques can be viewed as distributed

algorithms that make decisions based on local observations. However, they have extensive data

collection and storage requirements (see [28]).

By contrast, centralized algorithms have been proposed to reduce the energy expenditure in the

network. LEACH-C [50] is a centralized version of LEACH wherein the rotation of cluster heads is

controlled by a base station. LEACH-C is superior to LEACH in that its energy consumption is less

(based on computational results). Ci et al. [28] proposed a centralized clustering algorithm wherein

cluster heads are rotated based on mining the sensor energy data without localization information.

Khan et al. [59] proposed Multiple Parameter-based Clustering (MPC) which makes clustering

decisions based on the residual energy of sensors, proximity to the base station, and latency of

data to the base station. Gupta et al. [46] proposed a fuzzy-logic based clustering algorithm that

considers the residual energy, the number of neighboring nodes and centrality of the nodes.

Relevant to our work here are models that apply both exact and heuristic optimization tech-

niques to the optimal clustering problem in WSNs. Slama et al. [98] developed an optimization

model that maximizes the network lifetime by balancing energy expenditure over the sensors’ ac-

tivities. Islam et al. [55] proposed heuristic methods for the same problem. Krivitski et al. [30]

proposed a facility location-based heuristic algorithm for sensor networks where resources can be

placed in any of the k out of m possible locations. Furuta et al. [41] formulated the WSN clus-
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tering problem as an uncapacitated facility location problem and incorporated the residual energy

of sensor nodes. Their objective is to extend the network lifetime by finding the optimal number

of cluster heads and simultaneously selecting the cluster head candidates. Youssef et al. [113]

proposed a heuristic that considers cluster-overlapping in addition to connectivity and coverage.

Their heuristic provides the set of cluster heads such that every node in the network is within some

distance k from a cluster head. Aioffi et al. [3] proposed algorithms to minimize message delivery

latency by considering topology constraints that reduce energy consumption. Shanbehzadeh et al.

[93] developed a genetic algorithm and particle swarm-based heuristic algorithm to determine the

number of clusters, to elect the cluster heads and to cluster the members. Sevgi and Kocyigit [92]

developed a heuristic to determine the size of clusters and initial energy level of sensors to maintain

network lifetime and coverage requirements.

Perhaps most relevant to our model is the one described by Patel et al. [84] which considers the

optimal clustering of nodes in an ad hoc network with mobile nodes and unreliable communication

links. They proposed a mixed integer linear programming (MILP) model to maximize the expected

data coverage minus the cluster head reassignment costs. They developed a column-generation

heuristic to solve the problem and suggested several interesting extensions. Their models, however,

assume that sensor locations (or at least proximities to cluster heads) are known a priori and do

not consider the time evolution of sensor locations in the region.

The primary objective of this chapter is to formulate and solve optimization problems that seek

to maximize the demand coverage and minimize the costs of locating, and relocating, cluster heads

in a WSN with mobile nodes and unreliable links. Specifically, we will determine the cluster head

locations and assignment of sensor nodes to particular cluster heads over a finite planning horizon.

Due to node mobility and unreliability of the links, we also consider the optimal timing of sensor

location updates to relocate cluster heads and maintain connectivity of the network. Specifically,

cluster heads are relocated to ensure that each sensor node can send information to a cluster head

in a single hop. The model can be viewed as a generalization of the model in [84] in that we allow

the position of sensor nodes to evolve randomly over time, and we explicitly determine the best

time(s) at which to update the sensor locations. This dynamic updating of information is shown to

improve demand coverage and reduce the network traffic associated with updating locations in each

period of the planning horizon. Perhaps most important is the fact that we are able to linearize

our model and solve it with relative ease using a commercial solver.
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The remainder of the chapter is organized as follows. Section 4.1 introduces essential nota-

tion and provides the initial formulation for the problem of locating and relocating cluster heads.

Section 4.2 considers an extension of the main model to consider the problem of optimally timing

updates while Section 4.3 provides a summary of computation experiments.

4.1 MAIN PROBLEM FORMULATION

Because this chapter addresses a different class of problems than those addressed in Chapters 2 and

3, we first review and introduce some new notation. Consider a WSN with N sensor nodes that are

initially randomly distributed in a subset of Euclidean two-dimensional space; however, the nodes

are mobile and their locations evolve according to a continuous-time, continuous-state stochastic

process (described in greater detail later). For simplicity, we consider only a square sensor field R

(R ⊆ R2), but the same model can be used if R ⊆ R3. Let N = {1, 2, . . . , N} be the set of sensor

nodes and assume that each node in the network uses the same finite transmission range r (in

meters). Additionally, there are finitely many points in R that are candidate locations for cluster

heads. Let K = {1, 2, . . . ,K} be the set of labels for potential cluster head locations. At most n

(n ≤ K) of the K potential locations can be selected to host cluster heads. Figure 18 graphically

depicts this scenario where nodes marked by ⊗ represent potential cluster head locations and the

black dots represent the mobile sensor nodes.

The planning horizon consists of T (T < ∞) periods, each of equal duration, i.e. the planning

horizon is the finite set T = {1, 2, . . . , T}, where each element of T represents a decision epoch,

and the time between two epochs is referred to as a period. During each period t ∈ T , sensor node

j ∈ N generates a deterministic demand dj that must be satisfied by its cluster head. For example,

this demand might represent a summary of sensed data that must be reported to the cluster head

(e.g., the average temperature reading observed during period j). If a sensor node is within range

of at least one cluster head, the demand of that node is said to be covered. It is assumed that

sensors only report to cluster heads. That is, there is no routing involved – one sensor does not

act as a relay for other sensors in this model. The following notation will be used in the main model:
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Parameters:

• dj : the per period demand generated by sensor j ∈ N ;

• p: the probability of link failure between any cluster head and sensor (0 < p < 1);

• C: the unit cost of placing a single cluster head (or changeover cost);

• Zijt: an indicator random variable for the proximity of cluster head i to sensor j in period t,

Zijt =




1, if cluster head location i is within range of sensor j in period t,

0, otherwise.

In the main model, the objective is to locate and relocate cluster heads and to assign sensors

to cluster heads during each period. Therefore, the decisions variables are as follows:

Decision Variables:

• xit: a binary variable for cluster head assignment at a candidate location,

xit =




1, if a cluster head is placed at location i in period t,

0, otherwise;

Mobile sensor node Cluster head location

Figure 18: An illustrative example of a WSN with mobile nodes and cluster head locations.
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• υjkt: a binary variable indicating the sensor coverage by at least k cluster heads in period t,

υjkt =




1, if sensor j is covered by at least k cluster heads in period t,

0, otherwise;

• wit: a binary variable describing whether cluster head i is relocated at period t,

wit =





1, if a cluster head is located at i in period t− 1 and not in period t,

1, if a cluster head is located at i in period t and not in period t− 1,

0, otherwise.

We propose the following model to maximize the demand the coverage and minimize the relo-

cation costs by locating and relocating cluster heads.

(P4) max
∑

t∈T

∑

j∈N

K∑

k=1

(1− p)pk−1djυjkt − C
∑

i∈K

∑

t∈T
wit (4.1)

s.t. P

(
K∑

k=1

υjkt −
∑

i∈K
Zijt xit > ψ

)
≤ κ, j ∈ N , t ∈ T (4.2)

∑

i∈K
xit ≤ n, t ∈ T (4.3)

wit ≥ xit−1 − xit, i ∈ K, t ∈ T \ {1} (4.4)

wit ≥ xit − xit−1, i ∈ K, t ∈ T \ {1} (4.5)

xit ∈ {0, 1}, wit ≥ 0, i ∈ K, t ∈ T (4.6)

υjkt ∈ {0, 1}, j ∈ N , k ∈ K, t ∈ T (4.7)

The objective function (4.1) represents the expected demand covered by cluster heads minus the

total relocation costs. The term
∑K

k=1(1− p)pk−1djυjkt represents the expected demand coverage

of sensor j in period t, considering the link quality. Constraint (4.2) ensures that if sensor j is

covered by k′ cluster heads at time t, then each of the variables υj1t, υj2t, . . . , υjk′t is assigned a

value of 1 since the objective function contains the term υjkt. Note in constraint (4.2) that Zijt

is a random variable describing the connectivity of cluster head i and sensor j at time t. Here, ψ

(ψ > 0) can be viewed as a “small” amount of infeasibility, and κ (0 ≤ κ ≤ 1) is a user-specified

probability that bounds the likelihood that the chance constraint is violated. Larger values of κ

serve to relax the problem but may not yield high-quality solutions. On the other hand, when κ = 0,
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there is no chance of violating the constraint, yielding the most conservative solution. Constraint

(4.3) ensures that the maximum number of cluster heads to be located cannot exceed n during any

period. Constraints (4.4) and (4.5) determine the cluster head relocations and force wit to be 1 if

there is a change in cluster head location i in terms of cluster head assignments at time t. The

admissible values of decision variables are given by constraints (4.6) through (4.7).

The mathematical programming formulation (P4) can be viewed as a generalization of the

model presented by Patel et al. [84]. Specifically, we consider the stochastic evolution of sensor

locations over time rather than assuming the positions are known at all times. Therefore, rather

than specifying a deterministic constraint for the connectivity of sensors and cluster heads, we use a

probabilistic constraint (namely (4.2)) that allows us to bound the likelihood that the connectivity

requirement is violated. If the sensor locations are known at the start of each time period in the

planning horizon, then (4.2) becomes a deterministic constraint, making P4 equivalent to the model

proposed by Patel et al. [84].

Now, constraint (4.2) requires the distribution of
∑

i∈K Zijt xit, which cannot be easily derived

in general. But if the distribution function of Zijt can be obtained, it can be used to rewrite

(4.2) in a deterministic form that depends on the parameter κ. We next present an equivalent

representation of P4 by first defining the following additional variables and parameters:

• zijt: a binary variable describing the connectivity of cluster head i and sensor j in period t,

zijt =




1, if a cluster head at location i is within range of sensor j at time t,

0, otherwise;

• yjt: a binary variable describing the coverage of sensor j in period t,

yjt =




1, if sensor j is covered by at least 1 cluster head with at least probability κ at time t,

0, otherwise;

• Kjt ∈ K: the set of cluster heads within range of sensor j at time t,

Kjt = {i ∈ K : P(Zijt = 1) > κ};

• qjt: probability that sensor j is covered by at least 1 cluster head and the link is not failed.

Let Qijt be an indicator (random) variable describing the status of the link between sensor j

and cluster head i at time t. That is, Qijt = 1 if the link between cluster head i and sensor j is

failed and 0, otherwise. Note that P(Qijt = 1) = p. Proposition 4.1 shows how to compute the

time-dependent probabilities, qjt.
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Proposition 4.1. If the random variables {Qijt : i ∈ K, j ∈ N , t ∈ T } are mutually independent,

then

1− qjt =
∏

i∈Kjt

(P(Zijt = 1)p+ P(Zijt = 0))

for each j ∈ N and t ∈ T .

Next, our aim is to make the model deterministic. To that end, let 1(x) be an indicator function

that assumes the value 1 if condition x holds and 0, otherwise. Then the probabilistic constraint

(4.2) can be replaced by

zijt − 1(P(Zijt = 1) > κ)xit ≤ 0.

The revised model is problem P5:

(P5) max
∑

t∈T

∑

j∈N
qjtdjyjt − C

∑

i∈K

∑

t∈T
wit (4.8)

s.t. zijt − 1 (P(Zijt = 1) > κ) xit ≤ 0, i ∈ K, j ∈ N , t ∈ T (4.9)

yjt −
∑

i∈K
zijt ≤ 0, j ∈ N , t ∈ T (4.10)

yjt ∈ {0, 1}, zijt ∈ {0, 1}, j ∈ N , t ∈ T (4.11)

(4.3), (4.4), (4.5), (4.6). (4.12)

As in problem P4, the objective function (4.8) represents the expected demand covered by cluster

heads minus the relocation costs. Constraints (4.9) and (4.10) ensure that yjt = 0 if no cluster head

located within the transmission range of sensor j with probability at least as large as κ in period

t. It is worth mentioning that the column generation algorithm proposed by Patel et al. [84] can

be applied to solve problem P5 when 1(P(Zijt = 1) > κ) is known.

So far, we have assumed that the planning horizon is known a priori, and only the initial

positions of the sensors are known. However, to improve WSN performance, the mobile sensors

can broadcast their locations at the start of each period. This updating can be costly because (1)

the additional network traffic serves to increase energy expenditure [104], and (2) covert sensor

locations might be inadvertently revealed. The next subsection describes an extension of problems

P4 and P5 to determine the optimal time to next update the sensor locations in order to maximize

the expected demand coverage and minimize the location/relocation costs. Additionally, in the

next subsection, we modify the objective function to prevent the double counting of coverage as

the demand of a given sensor can be covered by multiple cluster heads.
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4.2 OPTIMALLY TIMING LOCATION UPDATES

The optimal solutions of problems P4 and P5 yield myopic policies, i.e., they maximize the demand

coverage and minimize location costs using only the initial sensor locations. However, the initial

sensor locations may not be adequate for decision making in each of the subsequent periods of the

planning horizon. In this section, we propose a non-myopic approach to relocate the sensors. The

objective of non-myopic cluster head relocation is to determine optimal relocation decisions until

the next time to update the sensor locations. The solution approach is repeated after all decisions

have been executed. That is, at the beginning of period t = 1, the model will determine not only

cluster head and sensor assignments, but also the optimal time t∗ at which to next update the

sensor locations. Subsequently, the problem can be solved sequentially starting with the updated

sensor coordinates at time t∗ until the end of the planning horizon. Updating the sensor locations

at these optimal times results in increased expected demand coverage and lower relocation costs.

Define st as a binary variable describing the first time that the node locations are updated after

time 0, that is,

st =




1, if sensor locations are updated for the first time at time t,

0, otherwise,

and let C ′ be the cost of updating the sensor locations. The new formulation is as follows:

(P6) max


∑

t∈T

∑

j∈N
qjtdjyjt − C

∑

i∈K

∑

t∈T
wit − C ′


 ·

∑

t∈T

st
t

(4.13)

s.t. yjt +
∑

t′≤t

st′ ≤ 1, j ∈ N , t ∈ T (4.14)

∑

t∈T
st = 1, (4.15)

st ∈ {0, 1}, t ∈ T (4.16)

(4.3), (4.4), (4.5), (4.6), (4.9), (4.10), (4.11). (4.17)

The objective function is identical to (4.8) except that here we maximize the average expected

demand covered by cluster heads minus the relocation and updating costs from the prior updating

time until the next updating time. Constraint (4.14) ensures that yjt = 0 for t ≥ t∗ where t∗ is the

next optimal updating time. This constraint is required because sensor locations must be updated at

time t∗ and P6 can be solved with the updated information for time periods t ∈ T \{1, 2, . . . , t∗−1}.
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With constraint (4.15), only the next update time is determined. The sequential solution procedure

is summarized below to explain how to obtain relocation decisions for time periods t ∈ T .

Step 0: Initialize/update qjt, j ∈ N , t ∈ T ;

Step 1: Solve P6 to determine cluster head locations for t ∈ T and time to update, t∗;

Step 2: At time t∗, update T := T \ {1, 2, . . . , t∗ − 1};
Step 3: If |T | > 1, then

Go to Step 0 ;

Else

End.

Solving P6 is nontrivial due to the nonlinearity of the objective function. This complication can

be avoided by linearizing the model and solving it using a commercial solver (e.g., CPLEX [29]).

To that end, define the following two variables, both of which are continuous on [0, 1]:

ujt = yjt
∑

m∈T

sm
m

, j ∈ N , t ∈ T ; (4.18)

vit = wit

∑

m∈T

sm
m

, i ∈ K, t ∈ T . (4.19)

Using these variables, we next present a mixed integer linear program (MILP) to determine the

optimal cluster head locations and the location updating times over the planning horizon T .

(P7) max
∑

t∈T

∑

j∈N
qjtdjujt − C

∑

i∈K

∑

t∈T
vit − C ′∑

t∈T

st
t

(4.20)

s.t. ujt −
∑

t∈T

st
t
≤ 0, j ∈ N , t ∈ T (4.21)

ujt − yjt ≤ 0, j ∈ N , t ∈ T (4.22)

wit − vit +
∑

t∈T

st
t
≤ 1, i ∈ K, t ∈ T (4.23)

vit ∈ [0, 1], i ∈ K, t ∈ T (4.24)

ujt ∈ [0, 1], j ∈ N , t ∈ T (4.25)

(4.3), (4.4), (4.5), (4.6), (4.9), (4.26)

(4.10), (4.11), (4.14), (4.15), (4.16). (4.27)

89



The objective function (4.20) of P7 is identical to that of problem P6 except that (4.20) is linear.

Constraints (4.21) through (4.23) ensure that ujt and vit are assigned their defined values via (4.18)

and (4.19). The admissible ranges of variables are set in (4.24) and (4.25). Most important, the

linearized model P7 is amenable to solution by a commercial solver, such as CPLEX [29]. The next

section highlights the advantages of updating the sensor locations over time when the sensors move

throughout the region according to a two-dimensional Brownian motion process.

4.3 COMPUTATIONAL EXPERIMENTS

4.3.1 Description of Experiments

The problem P7 is generic in terms sensor locations and movements. Here, for illustra-

tive purposes, we assume that each sensor’s movements in the sensor field can be modeled as

a two-dimensional Brownian motion (BM) process with drift. A continuous-time, continuous-state

stochastic process, {X(t) : t ≥ 0}, is called a one-dimensional BM process on R with drift µ if

X(t) = µt+ σB(t),

where µ is the drift parameter, σ is the diffusion coefficient and B(t) denotes standard Brownian

motion (i.e., B(t) ∼ N(0, t) for each t ≥ 0). The parameter µ can be viewed as the mean behavior

of the process whereas σ magnifies the random error term B(t). BM with drift can be viewed as

a linear motion which is observed when nodes move towards a target, and can be used to account

for randomness due to either environmental or functional effects (cf. [38]). Extending this idea,

{(Bx(t), By(t)) : t ≥ 0} is called a two-dimensional BM process if {(Bx(t)} and {(By(t)} are

independent, and each component is a one-dimensional BM process on R. We consider mobile

sensors moving according to a two-dimensional BM process with drift in the sensor field. Denote

the coordinates of sensor j at time t by (Xj(t), Yj(t)) where,

Xj(t) = µt+ σBx(t) and Yj(t) = µt+ σBy(t).

Two problem instances will be solved to illustrate the usefulness of updating sensor locations

within the optimization framework of P7. Specifically, we present a small problem instance (N =

25) and a large problem instance (N = 200). The specific parameters for each case are summarized

in Table 13.
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Table 13: Parameter values for the test instances.

Parameter description Small Instance Large Instance

Planning horizon (T ) {1, 2, . . . , 30} {1, 2, . . . , 30}
Number of sensors (N) 25 200

Number of potential cluster head locations (K) 25 196

Maximum number of cluster heads (n) 5 10

Cluster head relocation cost (C) 5.00 5.00

Location updating cost (C ′) 100.00 100.00

Per period demand of sensor j (dj) U(10, 20) U(10, 20)

Probability of link failure (p) {0.1, 0.2, . . . , 0.9} {0.1, 0.2, . . . , 0.9}
Coverage radius 13.00 13.00

Drift parameter (µ) 1 1

Diffusion coefficient (σ) {0, 1, . . . , 10} {0, 1, . . . , 10}
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Figure 19: Comparison of first time time to update: (-) p = 0.1; (- ·o) p = 0.5; (- -+) p = 0.9.

4.3.2 Results and Discussion

We plotted the optimal first time to update the sensor locations as a function of the diffusion coeffi-

cient (σ) in Figure 19. The behavior of this function is intuitive because as the diffusion parameter

increases, the variation in the sensor movements increases, thereby reducing the predictability of

the sensors’ locations. The updating frequency is decreasing in the diffusion parameter for both

the small and large problem instances. Additionally, we note that the optimal first update time

decreases as the probability of link failure (p) increases. This is because the gradual decrease in

the expected data coverage becomes more pronounced over time. Therefore, node locations need

to be updated more frequently to ensure that the rate of total data coverage minus the costs is

maximized. These conclusions are further corroborated by Tables 14 and 15.
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Table 14: Summary of results for small problem instance.

p σ Solution time (s) Objective value Optimal update time
0.1 0 50.86 351.74 30
0.1 1 64.95 349.01 26
0.1 2 83.37 340.49 20
0.1 3 47.16 338.08 19
0.1 4 29.80 281.46 14
0.1 5 21.92 311.20 11,21
0.1 6 13.98 294.95 9,16,24
0.1 7 13.90 284.31 8,15,22
0.1 8 8.50 272.99 8,15,22
0.1 9 6.96 253.70 6,11,17,23
0.1 10 4.52 239.89 6,11,17,22
0.5 0 53.40 314.00 30
0.5 1 67.10 313.03 26
0.5 2 83.51 299.43 20
0.5 3 46.94 252.84 13
0.5 4 27.60 267.61 12,24
0.5 5 18.44 255.31 10,20
0.5 6 13.10 238.94 9,16,24
0.5 7 13.46 225.13 8,15,22
0.5 8 8.22 212.38 7,14,20
0.5 9 6.82 196.40 6,11,17,23
0.5 10 4.60 182.45 6,11,17,22
0.9 0 61.68 113.45 30
0.9 1 69.94 102.47 23
0.9 2 68.94 95.22 20
0.9 3 46.27 89.64 13
0.9 4 27.41 77.59 11,23
0.9 5 19.55 69.93 10,20
0.9 6 13.20 62.64 9,16,24
0.9 7 12.36 56.49 8,15,22
0.9 8 8.02 50.78 7,13,19
0.9 9 6.44 45.03 6,11,17,23
0.9 10 4.46 39.87 5,9,14,19,23
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Table 15: Summary of results for large problem instance.

p σ Solution time (s) Objective value Optimal update time
0.1 0 1371.20 1143.36 30
0.1 1 1372.45 1094.84 30
0.1 2 1317.68 1004.25 24
0.1 3 1257.17 956.47 18
0.1 4 972.46 914.89 11, 22
0.1 5 651.44 861.12 11,19
0.1 6 427.51 824.48 8,15,23
0.1 7 299.49 790.13 8,14,19
0.1 8 258.32 755.86 7,13,18,24
0.1 9 253.52 718.91 6,11,16,21
0.1 10 158.12 677.61 6,10,15,19,24
0.5 0 1364.40 1047.35 30
0.5 1 1370.05 961.05 30
0.5 2 1284.22 875.53 21
0.5 3 1202.54 716.01 12
0.5 4 960.64 745.77 10,17
0.5 5 637.28 717.89 9,15,21
0.5 6 420.40 672.46 7,13,18
0.5 7 294.16 646.36 7,12,17,22
0.5 8 252.79 613.68 6,11,16,21
0.5 9 252.10 571.51 5,9,13,17,21
0.5 10 155.28 543.28 5,9,13,17,21
0.9 0 1414.03 366.32 30
0.9 1 1358.54 306.39 30
0.9 2 1275.22 271.14 20
0.9 3 1201.55 244.98 11,21
0.9 4 948.77 225.32 8,15,21
0.9 5 625.76 205.33 7,13,18,25
0.9 6 416.81 193.89 6,12,16,21
0.9 7 291.43 184.32 6,11,16,20,25
0.9 8 250.37 170.79 5,9,14,18,23
0.9 9 249.67 162.24 5,9,14,18,23
0.9 10 155.19 150.82 4,8,11,14,18,22,26
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(a) Small problem instance.
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(b) Large problem instance.

Figure 20: Comparison of objective values: (-) p = 0.1; (- ·o) p = 0.5; (- -+) p = 0.9.

Figure 20 shows the effect of sensor movement and link failure probability on the expected

data coverage minus the costs. As the diffusion parameter increases, the objective value decreases

because, as time progresses, the likelihood that a cluster head is within the range of a particular

sensor is decreasing. Figure 20 also shows that the value of the objective function decreases as the

probability of link failure increases.
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Figure 21: Coverage probabilities (small instance) (p = 0.1): (-) σ = 0.0; (- -) σ = 3.0; (-o) σ = 6.0.
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Figure 21 reveals insights into the effect of the diffusion coefficient on the optimal decisions,

which is enforced by constraint (4.9). Here, we consider cluster head i that is within the range

of sensor j at time 0. When the diffusion coefficient is ignored (i.e. σ = 0), the sensors follow

a deterministic path. Therefore, the probability that cluster head i remains within the range of

sensor j is either 1 or 0. On the other hand, as σ increases, the probability that cluster head i and

sensor j are connected decreases with time; therefore, expected data coverage decreases.

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

E
xp

ec
te

d 
da

ta
 c

ov
er

ag
e

Time

(a) Small problem instance.
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Figure 22: Data coverage with location updates (σ = 6.0, p = 0.1).

Figure 22 shows the effect of sensor location updates on expected data coverage. For example,

at times 0, 9, 17, and 25 in the small instance, the exact sensor locations are known. After update

times, the expected data coverage decreases due to the uncertainties in the sensor locations. The

optimal cluster head assignments and update times are presented in Table 16. When the sensor

locations are updated, more cluster heads are relocated because the availability of exact sensor

locations leads to opportunities for improving the demand coverage by relocating cluster heads.
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Table 16: Optimal cluster head assignments (σ = 6.0, p = 0.1).

Time Cluster head assignments
1 7 15 19 21 25
2 7 15 19 21 25
3 7 15 19 21 25
4 7 15 9 21 24
5 7 15 9 22 24
6 7 19 9 17 24
7 7 19 9 17 24
8 7 19 9 17 23
9 7 14 10 22 25
10 12 14 10 22 25
11 12 14 10 22 25
12 12 20 10 22 25
13 12 20 10 22 25
14 12 20 10 22 25
15 12 20 23 22 25
16 12 19 23 15 25
17 4 17 22 15 25
18 4 17 22 15 25
19 4 17 22 15 25
20 4 17 23 15 25
21 4 17 23 15 25
22 19 17 23 15 25
23 19 17 23 15 25
24 19 17 23 15 25
25 19 9 22 15 25
26 19 9 22 15 25
27 19 9 22 15 25
28 17 9 23 15 25
29 17 9 23 15 25
30 17 9 23 15 25

Figure 23 shows the dependence of sensor location update times on the cost of location updates

and relocation costs for the large instance. With increasing relocation cost, we observe that the first

update time decreases. This is intuitive since, as the relocation costs increase, the sensor location

information becomes more significant. On the other hand, the first update time is expected to

increase when the update cost increases, which can be observed when update cost is 3 in Figure 23.

Obviously, the object function value is decreasing in both the relocation and updating costs.
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Figure 23: Impact of updating cost on update time and objective value (large problem instance)

(σ = 6.0, p = 0.1): (· ·) C = 1; (- · o) C = 3; (- o -) C = 9.

In this chapter, we developed a stochastic optimization model to maximize the demand coverage

and minimize the costs of locating, and relocating, cluster heads in a WSN with mobile nodes and

unreliable links. In the optimization model, we consider the stochastic evolution of sensor locations

over time rather than assuming the positions are known at all times. The mathematical models are

amenable to solution by a commercial solver. The numerical results demonstrated that the non-

myopic cluster head relocation approach improves the data coverage when the sensors are mobile

and their locations in the planning horizon is uncertain. Moreover, relocation and sensor location

update time decisions are shown to be sensitive to the level of uncertainty of the sensor locations.
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5.0 CONCLUSIONS AND FUTURE RESEARCH

Chapter 2 presented both single- and multi-hop models for evaluating the performance of large-

scale WSNs with time-limited events and queries using a queueing-theoretic approach. With the

former model, we approximate the steady state proportion of query failures as a measure of quality-

of-service and the approximation is shown to be insensitive to the network size. The latter model

leads to an approximation of the same measure by considering the realistic effects of a limited

transmission range. We showed that this approximation converges to its infinite range (single-hop)

counterpart as the sensor transmission range tends to infinity. Our approach is unique in that it

considers time-limited event agents and queries and is not limited to memoryless (exponentially-

distributed) lifetimes. The numerical results demonstrated that the approximations are remarkably

accurate, even when distribution and network topology assumptions were violated. The approxi-

mations of Chapter 2 can be used for optimization of large-scale, query-based WSNs. The energy

expended for transmissions serves as a proxy for the total energy expenditure at a node because

event agent or query transmissions are the primary energy-consuming activity. Our models lead to

an approximated proxy for energy expenditure in the form of traffic rates, which can be used to

obtain optimal operating parameters so that a quality-of-service constraint is satisfied.

Although the models of Chapter 2 are mathematically valid, and the approximations are easy

to compute, they currently lack the flexibility to account for some realistic features of WSNs. First,

in the present framework, we assumed that all transmissions are perfect (i.e., there are no fading

effects or packet collisions) so that retransmissions are not necessary. In future work, it may be

possible to model each transmission queue as a single-server retrial queueing station to account for

event agents and queries that require retransmission. Second, it was assumed that event agents

and queries are transmitted in the order in which they are received. However, it is more realistic

to incorporate the deadlines of packets in the transmission queue so as to prioritize transmissions

(e.g., giving preference to those queries with the smallest remaining lifetime). One approach is to
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consider real-time queueing network theory (see Lehoczky [44,45]). Third, and finally, event agents

and queries were assumed to use a random-walk routing protocol that does not exploit additional

state information that can be used to improve routing and potentially reduce the overall proportion

of query failures. In the future, it will be instructive to develop similar approximations for WSNs

that use other common routing protocols.

In Chapter 3, we addressed the problem of network lifetime maximization in query-based WSNs

subject to connectivity and quality-of-service requirements. An approximate probability of network

connectivity considering the impact of border effects of a square region was derived. Subsequently,

we exploited the approximations of Chapter 2 to formulate nonlinear and linear mixed integer prob-

lems to maximize the network lifetime by choosing the optimal time-to-live counter, transmission

range and active/sleep schedules for each time period of a finite planning horizon. Moreover, we

presented a solution algorithm for solving a special case of the model in which all of the alive nodes

are in active mode in the planning horizon. The numerical results indicated that the network life-

time can be extended by selecting optimal parameters. In addition, we showed that high variability

in the energy expended by sensor nodes can lead to shorter network lifetimes on average.

Our research on maximizing WSN lifetime suggests a number of future directions. First, it

remains for future to develop extensive simulation models to assess the quality of the optimal so-

lutions of the mathematical models. A common WSN simulation environment such as OPNET

does not account for node failures and does not allow parameter selection for each time period;

therefore, one can seek to create simulation models that incorporate selecting time-to-live counter,

transmission range and active/sleep schedules for each time period of a finite planning horizon. The

impact of the model assumptions can be studied by comparing the model solutions with simulated

values. Second, it will be imperative to develop efficient solution algorithms for the most general

lifetime maximization problem. The proposed linear model has the form of a knapsack problem with

additional constraints and is, therefore, amenable to solution by a commercial solver. However, ob-

taining the model parameters and solving the linear model requires significant computational time,

so the existing model does not scale well for large-scale networks. While we developed an algorithm

for the special case, developing an efficient algorithm to reduce the size of the linearized model and

heuristic methods to solve the linearized model will be critical. Third, one can seek to develop

stochastic models to maximize network lifetime considering the time sensitivity of information and
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randomness of node deployment, event agents and query moving patterns. Stochastic optimiza-

tion methods are relatively new in WSN research and therefore proposing algorithms with chance

constraints would be appealing.

Chapter 4 explored the problem of cluster head location and relocation in mobile wireless

sensor networks while focusing on relocation and information updating costs. We first developed

a nonlinear stochastic optimization model to maximize the coverage of the network. Then, we

described a way to transform the nonlinear stochastic model into a deterministic linear model,

which can be solved using a commercial solver. Finally, the numerical results revealed the effect of

relocation decisions on the coverage and energy expenditure related to the relocation and location

updates. In addition, the effect of certain network parameters, including variability in the movement

patterns of sensor nodes, and the costs of relocating cluster heads, was explored.

The proposed cluster head relocation optimization models can be solved using commercial

solvers; however, heuristic algorithms are needed to solve these problems for large networks. The

clustering models and algorithms in the data processing and wired sensor network literature are not

applicable to the WSNs because of operational characteristics of these networks. Specifically, sensor

nodes in mobile WSNs are typically unaware of their locations. Moreover, the movement of sensors

without perfect location information increases the complexity of the problems. Therefore, future

developments for these models should focus on sensor movement models, stochastic optimization

models and solution techniques to handle general sensor movement patterns. Application-specific

algorithms are also required to improve the lifetime and coverage in WSNs, where sensors move

according to a specification of the network. Additionally, other than coverage and relocation

costs, depending on the application, selection of cluster heads should take into account uniform

distribution of energy consumption and quality of service. Finally, another area for future work

involves locating and relocating cluster heads when the sinks are mobile and data aggregation is

performed by a mobile agent.
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