5,095 research outputs found

    Containing epidemic outbreaks by message-passing techniques

    Get PDF
    The problem of targeted network immunization can be defined as the one of finding a subset of nodes in a network to immunize or vaccinate in order to minimize a tradeoff between the cost of vaccination and the final (stationary) expected infection under a given epidemic model. Although computing the expected infection is a hard computational problem, simple and efficient mean-field approximations have been put forward in the literature in recent years. The optimization problem can be recast into a constrained one in which the constraints enforce local mean-field equations describing the average stationary state of the epidemic process. For a wide class of epidemic models, including the susceptible-infected-removed and the susceptible-infected-susceptible models, we define a message-passing approach to network immunization that allows us to study the statistical properties of epidemic outbreaks in the presence of immunized nodes as well as to find (nearly) optimal immunization sets for a given choice of parameters and costs. The algorithm scales linearly with the size of the graph and it can be made efficient even on large networks. We compare its performance with topologically based heuristics, greedy methods, and simulated annealing

    Nilpotent Approximations of Sub-Riemannian Distances for Fast Perceptual Grouping of Blood Vessels in 2D and 3D

    Get PDF
    We propose an efficient approach for the grouping of local orientations (points on vessels) via nilpotent approximations of sub-Riemannian distances in the 2D and 3D roto-translation groups SE(2)SE(2) and SE(3)SE(3). In our distance approximations we consider homogeneous norms on nilpotent groups that locally approximate SE(n)SE(n), and which are obtained via the exponential and logarithmic map on SE(n)SE(n). In a qualitative validation we show that the norms provide accurate approximations of the true sub-Riemannian distances, and we discuss their relations to the fundamental solution of the sub-Laplacian on SE(n)SE(n). The quantitative experiments further confirm the accuracy of the approximations. Quantitative results are obtained by evaluating perceptual grouping performance of retinal blood vessels in 2D images and curves in challenging 3D synthetic volumes. The results show that 1) sub-Riemannian geometry is essential in achieving top performance and 2) that grouping via the fast analytic approximations performs almost equally, or better, than data-adaptive fast marching approaches on Rn\mathbb{R}^n and SE(n)SE(n).Comment: 18 pages, 9 figures, 3 tables, in review at JMI

    The Quantum Adiabatic Algorithm applied to random optimization problems: the quantum spin glass perspective

    Full text link
    Among various algorithms designed to exploit the specific properties of quantum computers with respect to classical ones, the quantum adiabatic algorithm is a versatile proposition to find the minimal value of an arbitrary cost function (ground state energy). Random optimization problems provide a natural testbed to compare its efficiency with that of classical algorithms. These problems correspond to mean field spin glasses that have been extensively studied in the classical case. This paper reviews recent analytical works that extended these studies to incorporate the effect of quantum fluctuations, and presents also some original results in this direction.Comment: 151 pages, 21 figure

    Real-time Global Illumination by Simulating Photon Mapping

    Get PDF

    Collective motion

    Full text link
    We review the observations and the basic laws describing the essential aspects of collective motion -- being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.Comment: Submitted to Physics Reports, Jan, 201

    A 2007 Model Curriculum For A Liberal Arts Degree In Computer Science

    Get PDF

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Parameter estimation for contact tracing in graph-based models

    Full text link
    We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is R0R_0. The estimator is tested in a simulation study and is furthermore applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution fit the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency of the estimates on the reproduction number. Finally, we discuss the relevance of our findings.Comment: 19 pages, 8 figures, 3 table

    Sampling of min-entropy relative to quantum knowledge

    Full text link
    Let X_1, ..., X_n be a sequence of n classical random variables and consider a sample of r positions selected at random. Then, except with (exponentially in r) small probability, the min-entropy of the sample is not smaller than, roughly, a fraction r/n of the total min-entropy of all positions X_1, ..., X_n, which is optimal. Here, we show that this statement, originally proven by Vadhan [LNCS, vol. 2729, Springer, 2003] for the purely classical case, is still true if the min-entropy is measured relative to a quantum system. Because min-entropy quantifies the amount of randomness that can be extracted from a given random variable, our result can be used to prove the soundness of locally computable extractors in a context where side information might be quantum-mechanical. In particular, it implies that key agreement in the bounded-storage model (using a standard sample-and-hash protocol) is fully secure against quantum adversaries, thus solving a long-standing open problem.Comment: 48 pages, late
    corecore