8,032 research outputs found

    Exact and heuristic solution of the consistent vehicle-routing problem

    Get PDF
    Providing consistent service by satisfying customer demands with the same driver (driver consistency) at approximately the same time (arrival-time consistency) allows companies in last-mile distribution to stand out among competitors. The consistent vehicle-routing problem (ConVRP) is a multiday problem addressing such consistency requirements along with traditional constraints on vehicle capacity and route duration. The literature offers several heuristics but no exact method for this problem. The state-of-the-art exact technique to solve VRPs-column generation (CG) applied to route-based formulations in which columns are generated via dynamic programming-cannot be successfully extended to the ConVRP because the linear relaxation of route-based formulations is weak. We propose the first exact method for the ConVRP, which can solve medium-sized instances with five days and 30 customers. The method solves, via CG, a formulation in which each variable represents the set of routes assigned to a vehicle over the planning horizon. As an upper bounding procedure, we develop a large neighborhood search (LNS) featuring a repair procedure specifically designed to improve the arrival-time consistency of solutions. Used as stand-alone heuristic, the LNS is able to significantly improve the solution quality on benchmark instances from the literature compared with state-of-the-art heuristics

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    The Vehicle Routing Problem with Service Level Constraints

    Full text link
    We consider a vehicle routing problem which seeks to minimize cost subject to service level constraints on several groups of deliveries. This problem captures some essential challenges faced by a logistics provider which operates transportation services for a limited number of partners and should respect contractual obligations on service levels. The problem also generalizes several important classes of vehicle routing problems with profits. To solve it, we propose a compact mathematical formulation, a branch-and-price algorithm, and a hybrid genetic algorithm with population management, which relies on problem-tailored solution representation, crossover and local search operators, as well as an adaptive penalization mechanism establishing a good balance between service levels and costs. Our computational experiments show that the proposed heuristic returns very high-quality solutions for this difficult problem, matches all optimal solutions found for small and medium-scale benchmark instances, and improves upon existing algorithms for two important special cases: the vehicle routing problem with private fleet and common carrier, and the capacitated profitable tour problem. The branch-and-price algorithm also produces new optimal solutions for all three problems

    Industrial and Tramp Ship Routing Problems: Closing the Gap for Real-Scale Instances

    Full text link
    Recent studies in maritime logistics have introduced a general ship routing problem and a benchmark suite based on real shipping segments, considering pickups and deliveries, cargo selection, ship-dependent starting locations, travel times and costs, time windows, and incompatibility constraints, among other features. Together, these characteristics pose considerable challenges for exact and heuristic methods, and some cases with as few as 18 cargoes remain unsolved. To face this challenge, we propose an exact branch-and-price (B&P) algorithm and a hybrid metaheuristic. Our exact method generates elementary routes, but exploits decremental state-space relaxation to speed up column generation, heuristic strong branching, as well as advanced preprocessing and route enumeration techniques. Our metaheuristic is a sophisticated extension of the unified hybrid genetic search. It exploits a set-partitioning phase and uses problem-tailored variation operators to efficiently handle all the problem characteristics. As shown in our experimental analyses, the B&P optimally solves 239/240 existing instances within one hour. Scalability experiments on even larger problems demonstrate that it can optimally solve problems with around 60 ships and 200 cargoes (i.e., 400 pickup and delivery services) and find optimality gaps below 1.04% on the largest cases with up to 260 cargoes. The hybrid metaheuristic outperforms all previous heuristics and produces near-optimal solutions within minutes. These results are noteworthy, since these instances are comparable in size with the largest problems routinely solved by shipping companies
    • …
    corecore