
VU Research Portal

Exact and heuristic solution of the consistent vehicle-routing problem

Goeke, Dominik; Roberti, Roberto; Schneider, Michael

published in
Transportation Science
2019

DOI (link to publisher)
10.1287/trsc.2018.0864

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Goeke, D., Roberti, R., & Schneider, M. (2019). Exact and heuristic solution of the consistent vehicle-routing
problem. Transportation Science, 53(4), 1023-1042. https://doi.org/10.1287/trsc.2018.0864

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Sep. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303695061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1287/trsc.2018.0864
https://research.vu.nl/en/publications/79500fb6-d23c-48b8-bc92-935d05f146db
https://doi.org/10.1287/trsc.2018.0864

This article was downloaded by: [145.108.136.101] On: 21 July 2020, At: 02:20
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Transportation Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Exact and Heuristic Solution of the Consistent Vehicle-
Routing Problem
Dominik Goeke, Roberto Roberti, Michael Schneider

To cite this article:
Dominik Goeke, Roberto Roberti, Michael Schneider (2019) Exact and Heuristic Solution of the Consistent Vehicle-Routing
Problem. Transportation Science 53(4):1023-1042. https://doi.org/10.1287/trsc.2018.0864

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2019, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/trsc.2018.0864
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

TRANSPORTATION SCIENCE
Vol. 53, No. 4, July–August 2019, pp. 1023–1042

http://pubsonline.informs.org/journal/trsc/ ISSN 0041-1655 (print), ISSN 1526-5447 (online)

Exact and Heuristic Solution of the Consistent
Vehicle-Routing Problem
Dominik Goeke,a Roberto Roberti,b Michael Schneidera

a School of Business and Economics, RWTH Aachen University, 52062 Aachen, Germany; bDepartment of Information, Logistics and
Innovation, VU Amsterdam, 1081 HV Amsterdam, Netherlands
Contact: goeke@dpo.rwth-aachen.de, http://orcid.org/0000-0003-1828-0285 (DG); r.roberti@vu.nl,

http://orcid.org/0000-0002-2987-1593 (RR); schneider@dpo.rwth-aachen.de, http://orcid.org/0000-0002-4203-8926 (MS)

Received: November 17, 2017
Revised: May 17, 2018
Accepted: July 18, 2018
Published Online in Articles in Advance:
June 28, 2019

https://doi.org/10.1287/trsc.2018.0864

Copyright: © 2019 INFORMS

Abstract. Providing consistent service by satisfying customer demands with the same
driver (driver consistency) at approximately the same time (arrival-time consistency) al-
lows companies in last-mile distribution to stand out among competitors. The consistent
vehicle-routing problem (ConVRP) is a multiday problem addressing such consistency
requirements along with traditional constraints on vehicle capacity and route duration.
The literature offers several heuristics but no exact method for this problem. The state-of-
the-art exact technique to solve VRPs—column generation (CG) applied to route-based
formulations in which columns are generated via dynamic programming—cannot be
successfully extended to the ConVRP because the linear relaxation of route-based for-
mulations is weak. We propose the first exact method for the ConVRP, which can solve
medium-sized instances with five days and 30 customers. The method solves, via CG,
a formulation in which each variable represents the set of routes assigned to a vehicle over
the planning horizon. As an upper bounding procedure, we develop a large neighborhood
search (LNS) featuring a repair procedure specifically designed to improve the arrival-time
consistency of solutions. Used as stand-alone heuristic, the LNS is able to significantly
improve the solution quality on benchmark instances from the literature compared with
state-of-the-art heuristics.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2018.0864.

Keywords: customer service • column generation • large neighborhood search • consistent vehicle routing problems

1. Introduction
Vehicle-routing problems (VRPs) with consistency
considerations have received substantial interest in
recent years because of the practical importance of
providing consistent service in many industries, such
as, for example, small package shipping, healthcare, or
vendor-managed inventory systems (for a survey,
see Kovacs et al. 2014). To boost customer satisfaction,
customers should be served at roughly the same time
(arrival-time consistency, ATC) by the same driver (driver
consistency, DC) or at least a small set of familiar drivers
each time they require service. Taking the driver’s
perspective, serving the same customers repeatedly
makes the driver familiar with the geographic region
and the characteristics of the customer and, thus, more
efficient in fulfilling the tasks.

The most prominent variant of the class of VRPs
with consistency considerations is the consistent VRP
(ConVRP), introduced by Groër, Golden, and Wasil
(2009). The ConVRP is a multiday VRP requiring that,
in addition to the traditional constraints on vehicle
capacity and route duration, the same driver serves the
same customers at approximately the same time on

each day that these customers require service, given by
a maximum allowed difference between the arrival
times on the different days. Originally, the problem is
motivated from the delivery and collection operations
at United Parcel Services, where strong emphasis is put
on customer and employee satisfaction.
In the academic literature, the ConVRP has received

adequate attention from the heuristic side. Groër,
Golden, and Wasil (2009) develop a two-phase algo-
rithm based on record-to-record travel, which first con-
structs template routes and then uses them to generate
the daily routes by removing nonoccurring customers
and inserting new ones. The template routes are based
on a simple precedence principle, which states that, if
two customers a and b are served by the same driver on
a specific day, then the driver who serves them and the
order in which they are served must be the same on all
days on which they both require service. Since the
publication of this article, four algorithms have been
proposed that are able to solve ConVRP instances,
three ofwhich use the idea of a template that is adjusted
to the individual days (Sungur et al. 2010; Tarantilis,
Stavropoulou, and Repoussis 2012; Kovacs, Parragh,

1023

http://pubsonline.informs.org/journal/trsc/
mailto:goeke@dpo.rwth-aachen.de
http://orcid.org/0000-0003-1828-0285
http://orcid.org/0000-0003-1828-0285
mailto:r.roberti@vu.nl
http://orcid.org/0000-0002-2987-1593
http://orcid.org/0000-0002-2987-1593
mailto:schneider@dpo.rwth-aachen.de
http://orcid.org/0000-0002-4203-8926
http://orcid.org/0000-0002-4203-8926
https://doi.org/10.1287/trsc.2018.0864
https://doi.org/10.1287/trsc.2018.0864

and Hartl 2014) and one approach that applies search
over all routes of all days (Kovacs et al. 2015).

Sungur et al. (2010) actually solve a different problem,
called the courier delivery problem, which is modeled
as a multiday VRP with soft time windows, using ro-
bust optimization and scenario-based stochastic pro-
gramming to represent uncertainty in service time and
probabilistic customers. With slight adaptations, their
tabu search (TS) approach can provide solutions that
adhere to the precedence principle of Groër, Golden,
and Wasil (2009) and, thus, solve the ConVRP. Tarantilis,
Stavropoulou, and Repoussis (2012) use a TS to improve
the template routes and the resulting daily routes in
a sequential manner. Kovacs, Parragh, and Hartl (2014)
present an adaptive large neighborhood search (ALNS)
that is solely applied to the template routes; the daily
routes are improved using a truncated two-opt oper-
ator. In addition, the paper proposes a relaxed version
of the problem called ConVRP with shiftable starting
times, in which it is possible to delay the departure at
the depot to better meet the ATC requirements. Finally,
Kovacs et al. (2015) introduce the generalized ConVRP,
which (1) allows each customer to be served by a set of
drivers (instead of a single one), (2) features shiftable
starting times and AM/PM time windows, and (3) does
not integrate the maximum time differences between
arrivals on different days as hard constraints but pe-
nalizes them in the objective function. The proposed
large neighborhood search (LNS) works on entire so-
lutions instead of a template and currently represents
the state-of-the-art heuristic also for the standard
ConVRP. Multiobjective variants of the ConVRP are
investigated by Kovacs, Parragh, and Hartl (2015)
and Lian, Milburn, and Rardin (2016) and are ad-
dressed by means of multidirectional LNS and local
search, respectively. Feillet et al. (2014) present an ALNS
to tackle a VRP with ATC in the context of transporting
people with disabilities. DC might also be imposed
by contractual arrangements between carriers and
customers. In this context, Dayarian et al. (2015, 2016)
study a multiperiod VRP arising in the dairy industry
in which a routing plan with recourse action must be
repeated in every period once negotiated.

To the best of our knowledge, no exact approach to
the ConVRP has been proposed yet. The only two pa-
pers addressing consistency considerations in an exact
fashion are owed to Subramanyam and Gounaris (2016,
2017), who study the consistent traveling-salesman
problem (TSP); that is, only one route per day is planned
and routes must adhere to the ATC requirements.
Subramanyam and Gounaris (2016) present three mixed-
integer, linear-programming (MILP) formulations and
several classes of valid inequalities that are embedded
in a branch-and-cut framework; they are able to solve
all instances with up to five planning periods and 25
customers to guaranteed optimality and also some

instances with up to 50 customers. Subramanyam and
Gounaris (2017) decompose the problem into a sequence
of single-period TSPs with time windows and solve the
consistent TSP via branch and bound; they are able to
solve instances with up to five planning periods and 100
customers, outperforming the results of Subramanyam
and Gounaris (2016), but a few instances with 33 cus-
tomers remain open.
The major contribution of this paper is twofold:
• We propose the first exact method for the ConVRP,

which is able to solve small andmedium-sized instances
with up to five planning periods and 30 customers.Most
of the state-of-the-art exact methods to solve VRPs are
based on column generation (CG) applied to formula-
tions in which each variable represents a feasible route,
and the pricing problem is solved via dynamic pro-
gramming (DP). However, these methods cannot be
directly extended to solve the ConVRP because the
linear relaxation of route-based formulations pro-
vides weak lower bounds because of the interdepen-
dency between the daily routes, which is caused by the
required ATC at customers. Therefore, we propose an
exact method based on CG applied to a formulation
in which each variable represents the set of routes
assigned to a vehicle over the planning horizon. The
exact method initially takes into account DC only
and addresses ATC at a later stage. We also show how
our exact approach can be modified to handle variants
of the ConVRP in which either (1) only the departure
time at the depot is flexible or (2) the departure time at the
depot is flexible andwaiting at customers is allowed, and
we investigate the benefits of adding such flexibility.
• As an upper bounding procedure, we develop an

LNS featuring suitable penalty mechanisms to deal with
infeasible solutions and a repair procedure specifically
designed to improve the ATC of solutions. Used as
a stand-alone heuristic, the LNS is able to significantly
improve the solution quality on benchmark instances
from the literature compared with state-of-the-art
heuristics. This is especially true for instances that as-
sume small service frequencies, that is, the probability
that a customer requires service on a given day is relatively
small, and that are, therefore, more difficult for template-
based methods.
A minor contribution of this paper is to provide

a new compact formulation for the ConVRP that improves
upon the compact formulation presented by Groër,
Golden, and Wasil (2009). The new compact formu-
lation contains fewer variables and constraints and is
able to provide optimal solutions of small-sized instances
in significantly shorter computing times.
The organization of this paper is as follows. In

Section 2, we formally define the ConVRP and the
notation used throughout the paper. In Section 3, we
introduce the new compact formulation. Section 4
describes the proposed exact method and Section 5

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
1024 Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS

the LNS. Section 6 is devoted to the computational
results. Conclusions and future research directions
are given in Section 7.

2. Problem Definition
In the ConVRP, a set of customers1 require delivery of
a single commodity over a set $ of days. The demand
of customer i∈1 on day d∈$ is denoted by qid (we
assume that qid � 0 if customer i does not require service
on day d); $i ⊆$ indicates the subset of days on which
customer i must be served (i.e., $i � {d∈ $ | qid > 0}),
and 1d ⊆1 is the subset of customers that must be
served on day d∈$ (i.e., 1d � {i∈ 1 | qid > 0}).

A homogeneous fleet _ of capacitated vehicles
based at a single depot, denoted by zero, is available
to satisfy all customer requests. The capacity of the
vehicles is given by Q. We indicate with 9 the set
of customers plus the depot (i.e., 9 � 1∪ {0}). The
travel time tij between two locations i, j∈9 is assumed
to be deterministic and symmetric (i.e., tij � tji). The
service time at customer i∈1 on day d∈$ is denoted
by sid. The maximum route duration of a vehicle on
each day is T time units.

To respect DC, each customer must be served by
the same driver/vehicle on every day of the planning
horizon on which service is required. ATC is expressed
by requiring that the service must take place roughly
at the same time, so the difference between the latest
and the earliest arrival time at each customer over the
planning horizon cannot exceed the maximum allowed
time difference L. As defined in Groër, Golden, and
Wasil (2009), we assume that vehicles are not allowed
to wait at a customer or the depot to meet ATC. The
objective of the ConVRP is to find a set of routes for the
vehicle fleet that minimizes the total vehicle operating
time z, defined as the total travel and service time over
the planning horizon.

3. A New Compact Formulation for
the ConVRP

To the best of our knowledge, the only formulation
proposed in the literature for the ConVRP is owed to
Groër, Golden, and Wasil (2009), who introduced
a compact formulation for the problem. In the fol-
lowing, we present a new compact formulation that
uses fewer variables than the one of Groër, Golden, and
Wasil (2009), namely at most |92 | · |_| · |$| + |9| · |_| +
|9| · |$| instead of at most |92 | · |_| · |$| + |9| · |_| · |$| +
|9| · |$|. The computational efficiency of the two for-
mulations is compared in Section 6.2, in which we
show that the new formulation is always better in terms
of both the quality of the lower bound provided by its
linear relaxation and the computing time to find the
optimal solutions of small-sized instances.

We represent the ConVRP on a directed multigraph
& � (9,!). The arc set ! is defined as ! � ∪d∈$!d,

where !d � {(0, j) | j∈1d}∪ {(i, 0) | i∈1d}∪ {(i, j) | i, j∈
1d : i≠ j}. Let t̂ijd be the modified travel time asso-
ciated with arc (i, j)∈!d, d∈$, defined as t̂ijd � tij if
i � 0 and t̂ijd � tij + sid otherwise. We define the fol-
lowing three sets of variables:
• xijkd ∈ {0, 1}: Binary variable equal to one if arc

(i, j) ∈!d is traversed by vehicle k ∈_ on day d ∈$ (zero
otherwise),
• yik ∈ {0, 1}: Binary variable equal to one if customer

i∈1 is served by vehicle k ∈_ (zero otherwise),
• bid ∈R+: Continuous variable indicating the arrival

time at customer i∈1 on day d ∈$i.
As such, the ConVRP can be formulated as follows:

z � min
∑
d∈$

∑
k∈_

∑
(i,j)∈!d

t̂ijdxijkd (1)

s.t.
∑

(0,j)∈!d

x0jkd ≤ 1 k ∈_ d∈$ (2)

∑
k∈_

yik � 1 i∈1 (3)

∑
i∈1d

qidyik ≤Q k ∈_ d ∈$ (4)

∑
(i,j)∈!d

xijkd �
∑

(j,i)∈!d

xjikd

j∈1 k ∈_ d∈$j (5)∑
(i,j)∈!d

xijkd � yjk j∈1 k ∈_ d ∈$j (6)

bid ≤T − (T − t̂0id)
∑
k∈_

x0ikd d∈$ i∈1d (7)

bid + (t̂ijd + T)∑
k∈_

xijkd + (T − t̂jid)
∑
k∈_

xjikd ≤ bjd + T

d∈$ i, j∈1d : i≠ j (8)

bid − bid′ ≤ L i∈1 d, d′ ∈$i : d≠ d′ (9)
xijkd ∈ {0, 1} k ∈_ d∈$ (i, j) ∈!d (10)
yik ∈ {0, 1} i∈1 k ∈_ (11)

t̂0id ≤ bid ≤T − t̂i0d i∈1 d∈$i. (12)

The objective function aims at minimizing the total op-
erating time. Constraints (2) guarantee that each vehicle
performs at most one route on each day. Constraints (3)
assign each customer to exactly one vehicle. Con-
straints (4) guarantee that the capacity of the vehicles
is not exceeded. Constraints (5) are flow-conservation
constraints. Constraints (6) link x and y variables to
ensure DC. Constraints (7) ensure that the arrival time
at a customer i is not greater than the travel time from
the depot to i if arc (0, i) is traversed. Constraints (8)
link x and b variables to set the arrival times based on
the traversed arcs and prevent subtours. Constraints (9)
model ATC requirements. Constraints (10)–(12) define
the range of the decision variables and ensure that
maximum route duration is respected.
Because formulation (1)–(12) is symmetric in the

vehicles (the fleet is homogeneous), any permutation of

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS 1025

a feasible solution with respect to index 1≤ k≤ |_| is
also a feasible solution. To break some symmetries, we
add the following inequalities to (1)–(12), which order
the vehicles by nonincreasing quantity delivered over
the planning horizon:∑

d∈$

∑
i∈1d

qidyik ≤
∑
d∈$

∑
i∈1d

qidyi,k−1 k ∈_\{1}. (13)

Adding subtour elimination constraints (SECs) to for-
mulation (1)–(12) allows significantly decreasing the
computing time to find an optimal solution of small
ConVRP instances. Therefore, in the computational
experiments in Section 6.2, the following set of gener-
alized SECs (GSECs) are added to our formulation:∑
(i,j)∈!d : i∈9\S, j∈S

Qxijkd ≥
∑
i∈S

qidyid k ∈_ d∈$
S⊂1d : |S| ≥ 2. (14)

Constraints (14) are clearly redundant when integrality
constraints (10) and (11) are present, but they strengthen
the linear relaxation of formulation (1)–(12).

4. An Exact Method for the ConVRP
In this section, we introduce a formulation of the ConVRP
with exponentially many variables. Two lower bounds
based on this formulation are presented in Section 4.1.
An outline of the proposed exact method is provided in
Section 4.2, and the different steps of the algorithm are
detailed in Sections 4.3–4.6.

Let Ω be the set of all possible subsets of customers
(hereafter called clusters) that can be served by a single
vehicle over the planning horizon without violating ca-
pacity, route duration, DC, and ATC constraints. More-
over, let gC be the minimum cost to serve cluster C ∈Ω
with a single vehicle; that is, gC is the sum of the costs of
the least-cost routes satisfying the listed constraints
performed by the vehicle on each day d∈$ to serve the
customers C∩1d. By introducing a binary decision
variable ξC that is equal to one if clusterC∈Ω is assigned
to a vehicle (zero otherwise), the ConVRP can be for-
mulated as the following set-partitioning (SP) problem:

z(SP) � min
∑
C∈Ω

gCξC (15)∑
C∈Ω : i∈C

ξC � 1 i∈1 (16)

∑
C∈Ω

ξC ≤ |_| (17)

ξC ∈ {0, 1} C∈Ω. (18)

The objective function (15) asks for minimizing the cost
of the selected clusters. Constraints (16) ensure that
each customer belongs to exactly one selected cluster.
Constraint (17) ensures that at most |_| clusters are
selected. Constraints (18) define variables ξ as binary.
Each feasible solution of problems (15)–(18) is a subset

of clusters ofΩ. The ConVRP solution corresponding to
that subset of clusters consists of the least-cost routes
associated with costs gC.
Note that SP contains exponentially many variables,

so a CG approach must be applied to find an optimal
ConVRP solution when solving problem SP. For many
variants of the VRP, the state-of-the-art exact methods
are based on CG (see, e.g., Jepsen et al. 2008; Baldacci,
Mingozzi, and Roberti 2011; Dabia et al. 2013; Contardo
and Martinelli 2014; and Pecin et al. 2017a, b). In all of
these methods, the pricing problem is solved via DP.
Unfortunately, DP cannot directly be applied to price out
clusters in a CG approach based on formulation SP
because of the number and the range of the state variables
needed and the weakness of the dominance rules that can
be applied.
However, it is possible to derive some tight lower

bounds from formulation SP (see Section 4.1), which
are used by our exact method to find an optimal
ConVRP solution. In the remainder of the paper, we
refer to our exact method as cluster column genera-
tion (CCG).

4.1. Lower Bounds Based on Formulation SP
Recall that, for a given cluster C∈Ω, the minimum cost
gC to serve all customers in Cwith a single vehicle over
the planning horizon is given by the sum of the costs of
the routes that on each day d∈$ serve all customers
1d ∩C without violating capacity, route duration, and
ATC constraints. Because of the ATC requirement, the
routes performed by a vehicle on each day are not
necessarily the least-cost routes (i.e., the TSP) to serve
all customers in the cluster.
Let Ω̂⊇Ω be the set of all possible clusters that can be

served by a single vehicle over the planning horizon
without violating capacity and route-duration con-
straints. Let ĝC be the cost to serve all customers of the
cluster C∈ Ω̂ with a single vehicle so that capacity and
route-duration constraints are respected but ATC con-
straints can be violated. It is easy to observe that cost ĝC
of clusterC∈ Ω̂ is given by the sumof the cost of the TSPs
to serve customers C∩1d on each day d∈$.
A valid lower bound to the ConVRP is, therefore, given

by the optimal value, z(LP0), of the following linear
problem, hereafter called LP0:

z(LP0) � min
∑
C∈Ω̂

ĝCξC (19)

s.t.
∑

C∈Ω̂ : i∈C
ξC � 1 i∈1 (20)

∑
C∈Ω̂

ξC ≤ |_| (21)

ξC ≥ 0 C∈ Ω̂. (22)

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
1026 Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS

The lower bound z(LP0) can be improved by adding the
following valid inequalities:

• Minimum number of vehicles:
∑
C∈Ω̂

ξC ≥_min, (23)

where _min is a lower bound on the minimum number
of vehicles used in any optimal solution of the ConVRP.

• Subset-row (SR) inequalities that state, for each
triplet of customers {i, j, h} ∈1, no more than one of the
clusters serving at least two of the three customers
{i, j, h} can be selected:∑

C∈Ω̂ : |C∩{i,j,h}|≥2
ξC ≤ 1 {i, j, h} ∈1 : i≠ j≠ h. (24)

Inequalities (24) are a special case of the well-known SR
inequalities introduced by Jepsen et al. (2008) and can
be separated by complete enumeration.

In the following, we denote by z(LP1) the optimal
value of problem LP0 plus inequalities (23) and by z(LP2)
the optimal value of problem LP0 plus inequalities (23)
and (24). Moreover, let αi ∈R be the dual variable as-
sociated with constraint (20) of customer i∈1, α0 ∈R−
the dual variable associated with constraint (21), β∈R+
the dual variable associated with constraint (23), and
γijh ∈R− the dual variable associatedwith constraint (24)
of the triplet of customers {i, j, h} ∈1.

4.2. Overview of CCG
CCG consists of four main steps that can be outlined as
follows:

Step 1. Initialization: An upper bound UB to the
ConVRP and a lower bound _min to the number of
vehicles in any optimal ConVRP solution are computed.
The upper bound UB is computed by running 10 times
the LNSdescribed in Section 5.3, each timewith a limit of
25,000 iterations (i.e., ηtotal � 25,000). The lower bound
_min on the minimum number of vehicles is computed
by using an MILP (see Section 4.3).

Step 2. Generate the set of clusters Ω̂: The goal of this
step is to generate the whole set of clusters Ω̂ (i.e.,
clusters that can be served by a single vehicle over the
planning horizon without violating capacity and route-
duration constraints). As described in Section 4.4, this
can be done via DP. If it is not possible to generate the
whole set Ω̂, then CCG stops without providing a
proven optimal solution to the ConVRP. We denote the
number of clusters after this step by |Ω̂′ |.

Step 3. Remove nonoptimal clusters from Ω̂: This step
aims at removing clusters that cannot belong to an
optimal ConVRP solution from the set of clusters Ω̂ by
iteratively computing optimal dual solutions of prob-
lems LP1 and LP2.

First, we use CG as described in Section 4.5 to
compute an optimal LP1 dual solution (α*,β*) of cost

z(LP1). Any cluster having reduced cost with respect
to (w.r.t.) (α*,β*) greater than the corresponding gap
(i.e., UB − z(LP1)) is then removed from the set Ω̂ be-
cause it cannot belong to an optimal ConVRP solution.
Second, using CG as described in Section 4.5, an optimal
LP2 dual solution (α*,β*,γ*) of cost z(LP2) is computed.
Any cluster having reduced cost w.r.t. (α*,β*,γ*) greater
than the corresponding gap (i.e., UB − z(LP2)) is then
removed from the set Ω̂.
Step 3 is iterated as long as the set of clusters Ω̂ is

reduced by using the optimal dual solutions (α*,β*)
and (α*,β*,γ*). By iterating, we can generate alterna-
tive optimal dual solutions (α*,β*) and (α*,β*,γ*), that
is, obtain different reduced cost w.r.t. to each cluster
and, thus, potentially remove additional clusters. We
denote the number of clusters left after this step as |Ω̂′′ |.
Step 4. Find an optimal ConVRP solution: Let Ω⊆Ω

be a subset of clusters C for which cost gC is known, such
that Ω∩ Ω̂ � Ø. The optimal value of the following
problem SP provides a valid lower bound to the
ConVRP:

z(SP) � min
∑
C∈Ω

gCξC + ∑
C∈Ω̂

ĝCξC (25)

∑
C∈Ω∪Ω̂ : i∈C

ξC � 1 i∈1 (26)

∑
C∈Ω∪Ω̂

ξC ≤ |_| (27)

ξC ∈ {0, 1} C∈Ω ∪ Ω̂. (28)

The objective function (25) aims at minimizing the total
cost of the clusters selected from the two sets Ω and Ω̂.
Constraints (26) ensure that each customer belongs
to exactly one of the selected clusters. Constraint (27)
guarantees that at most |_| clusters are selected. Con-
straints (28) are integrality constraints.
Let Ω* ⊆Ω∪ Ω̂ be the set of clusters in the optimal

solution of SP. We can observe that whenever Ω* ⊆Ω,
then the clusters of the set Ω* represent an optimal
ConVRP solution because they take into account ATC
and, by definition, DC.
To find an optimal ConVRP solution, the last step of

CCG consists of iteratively solving SP with a general
purpose MILP solver until an optimal ConVRP is found
while changing the sets of clusters Ω and Ω̂. At each
iteration, SP is solved, the cost gC* of one of the clusters
C* ∈Ω* ∩ Ω̂ is computed (see Section 4.6), and cluster
C* is removed from Ω̂. If z(SP) + gC*− ĝC* ≤UB, then
cluster C* is also added toΩ because it can be part of an
optimal ConVRP solution of cost between z(SP) and UB.
At the first iteration, the set Ω̂ is inherited from Step 3,
and the setΩ is empty. Note that it may not be possible
to serve a cluster C* with a single vehicle while adhering
to ATC; if so, cluster C* is obviously not added to Ω.

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS 1027

Because the complexity of computing cost gC* for a given
cluster C* also depends on the number of customers in the
cluster C*, at each iteration the selected cluster C* ∈Ω* ∩ Ω̂

is the one with the smallest number of customers.

4.3. Computing _min in Step 1
The lower bound _min on the minimum number of
vehicles in any ConVRP solution is computed by solving
the following MILP. Let ϕik ∈ {0, 1} be a binary variable
equal to one if customer i∈1 is assigned to vehicle k ∈_
(zero otherwise), and let ϑk ∈ {0, 1} be a binary variable
equal to one if vehicle k ∈_ is used (zero otherwise).
Then, _min can be computed as

_min � min
∑
k∈_

ϑk (29)

s.t.
∑
k∈_

ϕik � 1 i∈1 (30)

∑
i∈1d

qidϕik ≤Qϑk d∈$ k ∈_ (31)

ϕik ∈ {0, 1} i∈1 k ∈_ (32)
ϑk ∈ {0, 1} k ∈_. (33)

The objective function (29) aims at minimizing the
number of vehicles used. Constraints (30) ensure that
each customer i∈1 is assigned to exactly one vehicle.
Constraints (31) guarantee that the capacity of each ve-
hicle k ∈_ is respected on each day d∈$. The range of the
decision variables is defined by constraints (32) and (33).

For small and medium-sized ConVRP instances,
problems (29)–(33) can be solved to optimality with a
general purpose MILP solver in less than a second of
computing time.

4.4. Generating the Set Ω̂ in Step 2
To generate the set Ω̂, we use a simple DP recursion that
enumerates all feasible routes Φd for each day d ∈$ of
the planning horizon, and then clusters are generated by
combining the routes of the sets Φd. A route is feasible if
the vehicle capacity Q is not exceeded and its duration
does not exceed the maximum route duration T.

Let fd(S, i) be the cost of the min-cost path starting
from the depot, visiting all customers of the set S⊆1d,
and ending at customer i∈ S on day d∈$. Functions
fd(S, i) for each day d∈$ can be computed via DP as
follows. We initialize fd({i}, i) � t̂0id for each i∈1d. The
recursion for computing functions fd(S, i) for each
subset of customers S⊆1d and each customer i∈ S is

fd(S, i) � min
j∈S\{i}

{ fd(S\{i}, j) + t̂jid}.

Because routes have to respect the vehicle capacity Q
and the maximum route duration T, there is no need
to propagate functions fd(S, i) such that either fd(S, i) +
t̂i0d >T or

∑
j∈Sqjd >Q. For the sake of simplicity, we

assume, in the remainder of the section, that fd(S, i) � ∞

if function fd(S, i) is not computed because of constraint
violations.
The cost of the least-cost route to serve the subset of

customers S⊆1d onday d∈$ is given bymini∈S{ fd(S, i) +
t̂i0d}. From functions fd(S, i), it is possible to generate the
set Ω̂. In particular, cluster C⊆1 belongs to the set Ω̂
if mini∈C∩1d { fd(C∩1d, i) + t̂i0d} ≤T for each day d∈$;
otherwise, cluster C does not belong to the set Ω̂.
The cost ĝC of cluster C ∈ Ω̂ is given by

ĝC � ∑
d∈$

min
i∈C∩1d

{
fd(C∩1d, i) + t̂i0d

}()
.

We can observe that ĝC is the cost to serve all customers of
the set C with a single vehicle over the planning horizon
without necessarily satisfying the ATC constraints.

4.5. Computing Lower Bounds z(LP1) and z(LP2) in
Step 3

In principle, because all variables are generated a priori,
we could simply solve LP1 as it is. However, it is com-
putationally convenient to apply a simple CG algorithm
that solves LP1 by starting from a small set of clusters
(we use a dummy cluster that contains all customers
and has cost equal to UB) and then iteratively adding
the 100 clusters with the highest negative reduced cost at
a time until all clusters of the set Ω̂ have nonnegative
reduced cost w.r.t. the dual solution (α,β) of problem
LP1. The reduced cost ĝC(α,β) of cluster C ∈ Ω̂ is com-
puted as ĝC(α,β) � ĝC − α0 −∑

i∈C αi − β.
Once an optimal dual solution (α*,β*) of cost z(LP1)

is found, all clusters C∈ Ω̂ having reduced cost ĝC(α*,β*)
greater than the gap left (i.e., UB − z(LP1)) can be re-
moved from the set Ω̂ because they cannot belong to an
optimal ConVRP solution.
A similar CG procedure is applied to compute z(LP2).

At the beginning, the master problem contains no SR
inequalities (24) and just a dummy cluster; then, at each
iteration, the 100 clusters having the highest negative
reduced cost w.r.t. the dual solution (α,β,γ) of LP2 are
added along with the most violated SR inequality (24).
Once an optimal dual solution (α*,β*,γ*) of cost

z(LP2) is found, all clusters C ∈ Ω̂ having reduced cost
ĝC(α*,β*,γ*) greater than the gap left (i.e., UB − z(LP2))
can be removed from the set Ω̂ because they can-
not belong to an optimal ConVRP solution. The re-
duced cost ĝC(α*,β*,γ*) of cluster C∈ Ω̂ is computed as

ĝC(α*,β*,γ*) � ĝC − α*
0 −

∑
i∈C

α*
i − β*

− ∑
{i,j,h}∈1 :

|{i,j,h}∩C|≥2

γ*
ijh .

4.6. Computing Cost gC in Step 4
The problem of computing cost gC for a given cluster
C∈Ω* ∩ Ω̂ can be represented on a directed multigraph

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
1028 Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS

&(C) � (9(C),!(C)). The vertex set is defined as9(C) �
C∪ {0}, and the arc set !(C) is defined as !(C) � ∪d∈$
!d(C), where !d(C)�{(0,j) | j∈1d∩C}∪{(i,0) | i∈1d∩C}
∪{(i,j) | i,j∈1d∩C :i≠j}. Let us define the following
two sets of variables:

• xijd ∈ {0, 1}: Binary variable equal to one if arc
(i, j) ∈!d(C) is used on day d ∈$ (zero otherwise),

• bid ∈R+: Continuous variable indicating the arrival
time at vertex i∈C on day d∈$i.

Then, the cost gC of cluster C corresponds to the
optimal value of the following MILP:

gC � min
∑
d∈$

∑
(i,j)∈!d(C)

t̂ijdxijd (34)

s.t.
∑

(0,j)∈!d(C)
x0jd ≤ 1 d ∈$ (35)

∑
(i,j)∈!d(C)

xijd � 1 j∈C d∈$j (36)

∑
(j,i)∈!d(C)

xjid � 1 j∈C d∈$j (37)

bid ≤T − (T − t̂0id)x0id
d∈$ i∈1d ∩C (38)

bid + (t̂ijd + T)xijd + (T − t̂ijd)xjid ≤ bjd + T
d ∈$ i, j∈1d ∩C : i≠ j (39)

bid − bid′ ≤L i∈C d, d′ ∈$i : d≠ d′ (40)
xijd ∈ {0, 1} d∈$ (i, j) ∈!d(C) (41)

t̂0id ≤ bid ≤T − t̂i0d i∈C d∈$i. (42)

The objective function (34) aims at minimizing the
total operating time to visit all customers of the set C.
Constraints (35) ensure that the vehicle performs at
most one route on each day of the planning horizon.
Constraints (36) and (37) are in-degree and out-degree
constraints, respectively. Constraints (38) along with
constraints (42) properly set the arrival time at the first
customer of each route of each day. Constraints (39)
link variables x and z to update the arrival times at the
customers, depending on the traversed arcs, and pre-
vent subtours. Constraints (40) guarantee the ATC of the
routes. Constraints (41) and (42) define the range of
the decision variables.

We solve problems (34)–(42) by using a general pur-
poseMILP solver.We also add, in a cutting-plane fashion,
the well-known SECs defined as∑

(i,j)∈!d(C) :
i∈C,j∈9(C)\C

xijd ≥ 1 d∈$ S⊆1d ∩C : |S| ≥ 2. (43)

In the instances studied in this paper, the number of
customers in the clusters is usually limited to 10–15
customers. Therefore, it is possible to enumerate all
SECs (43) a priori and let the MILP solver add them in
a cutting-plane fashion. Alternatively, one could also

separate them in polynomial time and only add the
violated ones on the fly.
As mentioned in Section 4.2, problems (34)–(42) do

not necessarily have feasible solutions.

5. Large Neighborhood Search for
the ConVRP

We propose an LNS for the ConVRP that is used to
obtain upper bounds within our exact method but that
can also be used as a stand-alonemetaheuristic approach.
The LNS is enhanced by several components: (1) suitable
penalty mechanisms to deal with infeasible solutions,
(2) a repair procedure that is applied to improve the
ATC, and (3) regularly solving a set-partitioning prob-
lem using the clusters previously found by the search
to improve the solution quality.
In the following description, we represent a solution

6 as a set of routes {rkd | k ∈_, d∈$}. A route rkd �<
v0 � 0, v1, . . . , vnkd, vnkd+1 � 0> is given as a sequence of
vertices that starts and ends at the depot vertex zero
and visits a set 1(rkd) of nkd customer vertices in
between.
In the description of the algorithm, we directly report

the utilized values of the algorithm parameters. The
latter were determined in experimental fashion during
the development of our algorithm, and no systematic
fine-tuning was carried out. We found that our algo-
rithm is quite stable with regards to changes in the
parameter values as long as the new values stay within
the magnitude of the values of the current setting.
An overview of the algorithm, which we call LNS

with arrival-time consistency improvement (LNS-
ATCI), is given in Figure 1. First, LNS-ATCI generates
a feasible initial solution 6c with a savings algorithm
that respects the consistency requirements of the ConVRP
(see Section 5.1). Then, the initial solution is improved
in 25,000 iterations of LNS, including our specialized
component for improving the ATC (Section 5.3). Here,
infeasible solutions are allowed and are evaluated with
a generalized objective function (Section 5.2). The set-
partitioning problem for feasible clusters is described
in Section 5.4. Finally, every 250 iterations without
improvement of 6best, we reset 6c to 6best.

5.1. Modified Savings Algorithm
To generate an initial solution, we adapt the savings
algorithm of Clarke and Wright (1964) to handle the
multiday horizon and the DC and ATC constraints of
the ConVRP. Before the merge step of the savings
algorithm is applied, the routes to bemerged are assigned
to two different vehicles. Consequently, for the ConVRP,
merging two routes on a single day entails that the
routes of the two respective vehicles are also merged
on all other days.

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS 1029

In detail, our procedure works as follows: At the
beginning, each request is served by a dedicated route,
and if a customer requests service on multiple days of
the planning horizon, the corresponding routes are
all assigned to the same vehicle. In the next step, we
evaluate, for each pair of vehicles, how the solution
changes if the routes of the two vehicles are merged on
all days of the planning horizon. To this end, we sum
up the individual savings of merging both routes on
each day on which both vehicles provide service. We
limit the evaluation to the two cases in which either (1)
all routes of the first vehicle are served before all routes
of the second vehicle or (2) vice versa, but we do not
allow combinations hereof. This makes sense from
a practical viewpoint because it entails that requests of
a customer are served at about the same time on each
day. The cases that we do not evaluate are likely to
result in routes on which a customer is served early on
one day and late on another day. Finally, we perform
the merge that results in the largest total savings but
only if it leads to a feasible solution; that is, no resulting
route exceeds the vehicle capacity or maximum route
duration, and the vehicle does not violate the ATC
constraint. After each step, we remove one of the two
vehicles whose routes were merged.

Figure 2 shows an example of four iterations of the
modified savings algorithm for a two-day problem. In
the beginning, each request is served by a dedicated
route. Customer requests occurring on both days are
depicted in black, and single-day requests are depicted

in gray. In the first step, the routes serving requests of
customers A and B are merged on both days (assuming
that this generates the highest savings), and the vehicle
serving customer B is removed. Arcs to be added are
depicted as dashed lines, arcs to be removed as dotted
lines. In the second step, the routes serving requests
of customers G and D are merged on the second day
(again assuming that this generates the highest sav-
ings), and we keep the route serving D on the first day
(because G does not request service on the first day).
The third merge operation affects both days, whereas
the fourth merge operation is limited to the first day.
The final solution uses three vehicles to serve all cus-
tomer requests.

5.2. Generalized Objective Function and
Penalty Calculation

We allow infeasible solutions during the LNS and eval-
uate a solution6 using the following generalized objective
function that penalizes constraint violations using an
adaptive mechanism:

zgen(6) � z(6) + σcap ·Gcap(6) + σdur ·Gdur(6)
+ σatc ·Gatc(6),

where z(6) denotes the objective value as defined in
Equation (1), Gcap(6) the capacity violation, Gdur(6) the
route-duration violation, and Gatc(6) the ATC violation
of solution 6, and σcap, σdur, and σatc are the respective
penalty factors.
The constraint violations are determined as follows:
• Vehicle capacity violation: Gcap(6) � ∑

k∈_
∑

d∈$ ·
max(0,∑i∈1(rkd) qid −Q),
• Route-duration violation: Gdur(6) � ∑

k∈_
∑

d∈$ ·
max(0,maxi∈1(rkd)(bid + t̂i0d) − T),
• ATC violation: Gatc(6) � ∑

i∈1
∑

d∈$i

∑
d′∈$i

max(0,
|bid − bid′ | − L).
All penalty factors are initialized to a value of 10 and

are restricted to the interval [0.01, 1,000]. In every it-
eration of LNS-ATCI, the penalty factors are multiplied
or divided by a factor of 1.05 based on the follow-
ing rules:
• Factor σcap is increased ifGcap(6)> 0 and decreased

otherwise.
• We link the behavior of the penalty factors σdur

and σatc becauseGatc(6) andGdur(6) are interdependent
in our algorithm. This is due to our procedure for
improving the ATC (Section 5.3.2), which often reduces
violations of the ATC at the expense of generating
longer routes that are likely to violate the route-duration
constraint. Therefore, σdur is increased if Gdur(6)> 0∧
Gatc(6) � 0, decreased if Gdur(6) � 0∧ Gatc(6) � 0, and
kept at its current value otherwise. Analogously, σatc
is increased if Gatc(6)> 0∧ Gdur(6) � 0, decreased if
Gatc(6) � 0∧Gdur(6) � 0, and kept fixed otherwise.
We also studied the effect of (1) adjusting the penalty

Figure 1. Overview of the LNS-ATCI Algorithm

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
1030 Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS

factors independently of each other, that is, also in-
creasing if Gdur(6)> 0∧Gatc(6)> 0 and decreasing if
Gdur(6) � 0∧Gatc(6)> 0 (and analogously for Gatc(6))
and (2) increasing if Gdur(6)> 0∧Gatc(6)> 0 and
keeping at the current value ifGdur(6) � 0∧Gatc(6)> 0
(and again analogously for Gatc(6)) in preliminary
studies. Both of these variants have a slight detrimental
effect on solution quality.

5.3. Large Neighborhood Search Component
LNS, originally introduced by Shaw (1998), is a meta-
heuristic principle that aims at iteratively improving an
initial solution by first removing a larger part of the
solution (using a set of so-called removal operators)
and then reinserting the removed solution components
(using so-called insertion operators). In recent years,
LNS has successfully been applied to many variants of
the VRP (see, e.g., Ropke and Pisinger 2006a; Masson,
Lehuédé, and Péton 2013; and Adulyasak, Cordeau,
and Jans 2014).

In each iteration of LNS-ATCI, the number of cus-
tomers to be removed is randomly drawn from the
interval δ � rand([0.05, 0.2]) ·min(150, |1|). Removal,
insertion, and subsequent ATC improvement (see
Sections 5.3.1 and 5.3.2) create a tentative solution 6t,
which may be infeasible because LNS-ATCI always
generates a complete solution and does not leave cus-
tomer requests in a so-called request bank as is often
done in LNS. The decision whether to accept 6t or to
keep the current solution 6c is based on a simulated
annealing (SA) criterion (Section 5.3.3).

5.3.1. Removal and Insertion Operators. In each iter-
ation, LNS-ATCI randomly selects one of the removal
and one of the insertion operators with uniform proba-
bility. Removal/insertion of a customer implies the
removal/insertion of all service requests of this customer

on all days of the planning horizon. The following re-
moval operators are used:
Random removal removes δ arbitrarily selected customers.
Worst removalwas introduced by Ropke and Pisinger

(2006b) to remove vertices that are served at undesir-
able positions in the routes. We propose a modified
version of the operator that is (1) not randomized and
(2) adapted to the ConVRP. Let 6−i denote a solution in
which customer i is removed on all days. We define the
following measure κi to determine which customers
should be removed from the solution:

κi � (z(6−i) − z(6))/|$i | + σcap · (Gcap(6−i) − Gcap(6))
+ σdur · ((Gdur(6−i) − Gdur(6)).

Note that we divide the reduction in total operating
time by the number of days on which customer i re-
quires service; that is, we base the decision on the average
operating time reduction per request. Otherwise, the
selection would be biased toward customers with a
higher number of service requests. The positive effect of
dividing by the number of service days is supported
by the results of preliminary experiments. Finally, all
customers are sorted in ascending order of κi, and we
select the first δ customers for removal.
Proximity removal removes close customers. Let tmax �

maxi∈1,j∈1tij be the maximum travel time between any
pair of customers. The first customer i to remove is
randomly selected. It serves as a center point for the
subsequent removals of customers j that are randomly
selected if tij ≤ 0.2 · tmax until δ customers are removed.
If the number of customers within 0.2 · tmax is less than
the number of customers to be removed, we randomly
select a customer that is served by the same vehicle as
the last removed customer to be the next center point.
Vehicle removal selects customers for removal that

are served by the same vehicle. We start with a randomly

Figure 2. Four Steps of Our Modified Savings Algorithm on a Two-Day Example Problem

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS 1031

selected vehicle and remove all customers served by the
vehicle. If at least δ customers have been removed, we
terminate the procedure. Otherwise, each remaining
vehicle k is selected as the next vehicle for removal
with a probability pk � χkk′/

∑
k′′∈_χk′k′′ that is propor-

tional to the inverse distance χkk′ between vehicle k and
the previously selected vehicle k′. The distance between
vehicles is the Euclidean distance between their cen-
ters of gravity, which is determined as the mean of the
weighted coordinates of the customers served by the
vehicle. The coordinates of a customer i are weighted
with the factor |$i |/|$|.

We use the following insertion operators:
Greedy insertion iteratively performs the best possible

insertion in a myopic manner. Computational experi-
ence shows that the ATC violations caused by the
insertion of customers into partial solutions are not
representative for the ATC violations of the final com-
pleted solution. In addition, calculating these viola-
tions is computationally expensive. Therefore, we do
not consider the direct effect of an insertion on the
ATCviolation bymeans ofGatc and insteaduse a learning-
based penalty component Patc that aims at indirectly
improving the ATC. Not directly considering ATC
violations allows the determination of the best insertion
position separately on each individual day because
violations of route duration and capacity are not linked
over the days.

Let r+(i,p)kd be the current route of vehicle k on day d
with customer i inserted after position p. Then, for each
still-unassigned customer i and each vehicle k, we com-
pute the cost increase

Δẑik �
∑
d∈$i

min
p�0,. . . ,nkd

((z(r+(i,p)kd) − z(rkd)) + σcap

· (Gcap(r+(i,p)kd) − Gcap(rkd))

+ σdur · ((Gdur(r+(i,p)kd) − Gdur(rkd)) + Patc(r+(i,p)kd)),

and perform the cheapest insertion according to Δẑik.
The procedure is iterated until all customers are inserted.

The aim of the penalty Patc is to identify solution
components that are critical with regards to the ATC
constraints. For every arc (h, j) ∈!d and for every day
d ∈$, we store a penalty value µhjd that is initially set to
zero. After each complete LNS iteration, including the
ATC repair step (see Section 5.3.2 for details), the
penalty values of a subset of the arcs contained in
the newly generated solution 6 are updated based on
the ATC of the vehicle k traveling the arc:

• If vehicle k does not violate the ATC, we set
µhjd ≔max(0,µhjd − Δµhjd) with Δµhjd � 0.25 · thj for all
arcs traveled by vehicle k.

• If vehicle k violates the ATC, we first draw a
randomly selected subset $ of the days of the planning

horizon (each day is drawnwith a probability of 0.5) on
which the arcs contained in the solution shall be pe-
nalized; penalizing on all of the days on which the
vehicle is used does not help our algorithm to explore
new solution components. Then, we increase on every
day d ∈$ the penalty values µhjd of all arcs (h, j) ∈!d
that are traveled by the vehicle by Δµhjd.
Thus, we determine the penalty Patc(r+(i,p)kd) for

inserting customer i after position p into route rkd, that
is, between vertices v � rkd (p) and w � rkd (p + 1) as
Patc(r+(i,p)kd) � µvid + µiwd. A large penalty µhjd might pre-
vent the corresponding arc from being included in
a solution, and consequently, with the rules described,
this penalty value would never be reduced again. To
counteract this undesired behavior, we discount in
every iteration all penalty values by a constant factor
as µhjd ≔µhjd/1.5.
Regret insertion tries to anticipate and avoid the neg-

ative future consequences of greedy insertion (Ropke
and Pisinger 2006b). We calculate the two-regret value
of each customer i as the difference between the in-
sertion cost Δẑik of assigning customer i to the best
vehicle k and the costΔẑik′ of assigning it to the second-
best vehicle k′. The customer with the largest absolute
two-regret value is selected for insertion, and the
procedure is iterated until all customers are inserted.
We implement two additional variants of greedy and

regret insertion that add a continuous diversification
penalty Pdiv(i, k) for assigning customer i to vehicle k
(see, e.g., Cordeau, Laporte, and Mercier 2001):

Pdiv(i, k) � rand([0.5, 1.0]) ·
������������
z(6) · ζi,k

√
∑

i∈1 |$i |
,

where ζi,k is the frequency with which customer i was
assigned to vehicle k by an LNS insertion operator, and
the randomization is introduced to prevent cycling of
the algorithm. The goal is to encourage the experi-
mental exploration of different solutions. Note that it
might happen that identical routes are associated with
different vehicles during the course of the algorithm,
and therefore, the frequencies ζi,k for a certain customer
set may be reset from time to time. In our case, this does
not cause any numerical problems. The same diversi-
fication penalty has also been used in several other
papers (see, e.g., Cordeau and Laporte 2003 and Goeke
and Schneider 2015).

5.3.2. ATC Improvement. We find that the generated
solutions that violate ATC constraints often contain
routes that serve the same set of customers in almost
reversed order on different days; that is, they strongly
disregard the precedence principle of Groër, Golden, and
Wasil (2009) described in Section 1. For each vehicle
violating ATC constraints, we try to improve the ATC
with the following two-stage procedure:

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
1032 Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS

1. Inversion of a subset of the routes to generate similar
orders of the customer visits on all days,

2. Customer relocation to reduce ATC violations.
To determine which routes should be selected for

inversion in step 1, we require (1) a measure for the
difference between routes with regard to the order of
customer visits and (2) a mechanism to decide which
subset of day routes should be inverted based on the
pairwise difference of the routes with respect to the
measure defined in (1).

As a difference measure between two routes, we
use the number of customer pairs that occur in reverse
order in the two routes. More precisely, we first define
a function p(rkd, v) that returns the position of vertex
v in route rkd. Then, we determine 5<

kd � {(v,w) | v,
w ∈1(rkd), p(rkd, v)< p(rkd,w)} as the set of all pairs of
customers (v,w), where customer v is served before
customer w in route rkd. Further, we define a function
γ(v,w) that returns one if v � w and zero otherwise.
With this, we measure the difference ρ(rkd, rkd′) between
routes rkd and rkd′ on two days d and d′ as

ρ(rkd, rkd′) �
∑

(v,w)∈5<
kd

∑
(v′,w′)∈5<

kd′

γ(v,w′) ·γ(w, v′).

We illustrate the calculation with the following ex-
ample: routes rkd �<0,4,1,2,0> and rkd′ �<0,1, 2,4,0>
have the corresponding sets 5<

kd � {(4,1), (4, 2), (1,2)}
and 5<

kd′ � {(1,2), (1,4), (2,4)}, respectively. The differ-
ence ρ(rkd, rkd′) is equal to two because two pairs occur in
reverse order in both routes, namely (4,1) and (1,4) and
(4,2) and (2,4).

To determine the subset of routes to be inverted, we
separate the day routes of each vehicle into two groups
using average linkage clustering (see, e.g., Sarstedt and
Mooi 2014) based on the distance measure ρ: first, we
create one cluster * � {rkd} for each day d∈$; then,
we iteratively merge the pair of clusters * and *′ that
minimizes

∑
rkd∈*

∑
r
kd′

∈*′ρ(rkd, rkd′)/(|*| · |*′ |) until only
two clusters remain. We first generate a solution by
inverting all routes of the first group and then a second
solution by inverting all routes of the second group.We
calculate the number of customers that violate the ATC
constraint in each of the two resulting solutions and
in the original solution, and we hand the solution with
the lower number over to the second stage. To save
computational effort spent on evaluating unpromising
steps, we skip the clustering and the subsequent route
inversion if the routes of a vehicle k are too similar;
that is, if

∑
d∈$

(∑
d′∈$,d≠d′ρ(rkd, rkd′)/|1(rkd)|) is below a

threshold value that we set to 0.01.
The idea of the second stage is to use customer re-

locations to improve the ATC. We first determine the
customer with the largest ATC violation and inspect all
requests of this customer. We call every request late
(early) if it causes a violation of the maximum allowed

time difference assuming that the request served ear-
liest (latest) is fixed. Then, we investigate two options
for improving ATC of customer i: (1) to serve customer i
later on the days with early service and (2) to serve
customer i earlier on the days with late service. For both
cases, we determine a time window within which the
customer should be served on the violating days.
In case (1), we separate the planning horizon into a

set of early days Ψi � {d|d∈$i ∧ bid < (maxd∈$ibid) − L}
and a set of feasible days Θi � $i\Ψi. Now, we de-
termine a time window [maxd∈Θibid − L, mind∈Θibid + L].
Then, for each violating day d∈Ψi, we relocate cus-
tomer i such that the new arrival time lies within the
time window and the increase in operating time z(S) is
minimal. The procedure for case (2) works analogously.
Note that the determined time window does not guar-
antee ATC of the resulting solution (because ATC at
other customers is not taken into account) but aims to
guide the algorithm toward better ATC.
We tentatively perform the relocations for the se-

lected customer and both cases. Because the relocation
of requests may lead to violations of the maximum
allowed time difference at other customers, we ei-
ther keep the original solution or the solution related to
case (1) or case (2), depending on which solution has
the lowest number of violating customers. Then, ATC
violations are recalculated, and we continue with the
customer that now has the largest ATC violation until
all customers are served consistently or each customer
has been tried once.
Figure 3 shows an example application of our ATC

improvement procedure. Vertices depicted in black
violate the ATC constraint. In the left part, we illustrate
the clustering algorithm and the inversion of routes. First,
the difference between every pair of days is calculated:
days 1 and 3 are identical and have a distance of zero,
days 1 and 2 and days 2 and 3 both have a distance of
eight. The clustering assigns days 1 and 3 to the first
cluster and day 2 to the second cluster. The best solution
is obtained by inverting the route on the second day (the
inversion of the routes of the first cluster is not shown).
In the center part of the figure, the resulting solution is
shown: only customerC exhibits anATCviolation.Now,
we evaluate both options: to serve customer C later on
day 2 or earlier on days 1 and 3 (only the first case is
shown). Based on the fixed arrival times on days 1 and 3,
we determine the time window within which cus-
tomer Chas tobe servedonday 2.CustomerC is relocated
between customers B and D because the increase in op-
erating time is minimal. The final solution, which respects
theATCconstraints, is shown in the right part of thefigure.

5.3.3. Simulated Annealing–Based Acceptance. Our
LNS-ATCI always accepts improving solutions, and
a deteriorating solution 6t is accepted with a probability
that depends on the difference between the objective

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS 1033

function values Δzrel and a temperature θ (see, e.g.,
Kirkpatrick, Gelatt, and Vecchi 1983):

p(6t,6c,θ) � e
−Δzrel(6t ,6c)

θ .

To avoid the undesired effect that differences between
objective function values also depend on the values of
the penalty factors, we use the relative difference be-
tween objective function values to calculate the accep-
tance probabilities (see Goeke and Schneider 2015):

Δzrel(6t,6c) � zgen(6t) − zgen(6c)
zgen(6c) .

The temperature follows a predefined cooling schedule
defined by an initial temperature and a cooling rate.
The initial temperature is such that a solution that
deteriorates the initial solution by 50% is accepted with
a probability of 50%. We decrease the temperature in
every iteration by multiplying it with the cooling rate,
and we set the cooling rate such that the temperature is
below θmin � 0.0001 in the last 20% of iterations.

5.4. Set Partitioning
Every 5,000 iterations, we try to improve the best so-
lution found so far by solving the set-partitioning for-
mulation (15)–(18) for a pool ΩLNS of heuristically
determined clusters with a commercial solver. If we find
a new best solution, we replace the previous best so-
lution6best. To speed up the solution process, we use the
current best solution as the initial solution. To generate
Ω

LNS, we add all feasible clusters that we find during
the search, and we store the associated objective value
gC and the routing solutions of the individual days.
Whenever we encounter a cluster that is already present

in Ω
LNS, we update the objective value and the routing

if the new objective value is better.
Because we never remove any cluster fromΩ

LNS, the
problem size is strictly increasing, and we use the fol-
lowing three approaches to reduce runtime:

Restrict the Number of Routes. Subramanian, Uchoa,
and Ochi (2013) found that restricting the number of
available routes can speed up the solution of the set-
partitioning problem for a wide range of VRPs. We add
the following constraint to restrict the number of se-
lected clusters:

|_′ | − 1≤ ∑
C∈ΩLNS

ξC ≤ |_′ | + 1,

with _′ the set of vehicles in the current 6best that serve
at least one customer.

Only Solve Promising Problems. We observed that it
is unlikely to find a new best solution if the lower
bound LB given by the linear relaxation of the current
set-partitioning does not improve compared with the
LB of the last set-partitioning solved. Therefore, before
we solve the set-partition problem including the inte-
grality constraints (18),we relax the latter to quickly obtain
an LB. Now, we only add the integrality constraints if this
LB improves the previous LB by more than 0.4%.

Limit the Runtime of the Solver. We adjust the time
limit of the commercial solver depending on the ini-
tial optimality gap, that is, the difference between
the objective value 6best and LB. In detail, we calculate
the runtime in seconds as 10 +min(20, 20 · (z(6best) −
LB)/0.04). Consequently, the maximum runtime of

Figure 3. Example Application of the ATC Improvement Procedure

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
1034 Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS

30 seconds is used if the optimality gap is at least 4%.
Furthermore, the last problem solved during LNS-
ATCI is always performedwith the maximum time limit
of 30 seconds.

6. Numerical Studies
In this section,we present our numerical studies to assess
the performance of CCG and LNS-ATCI. In Section 6.1,
we describe the benchmark instances available from the
literature and the generation of new medium-sized in-
stances. In the first experiment (Section 6.2), we solve the
compact formulation of Groër, Golden, andWasil (2009)
and our improved formulation using CPLEX and com-
pare it to CCG on small-sized instances from the litera-
ture. In the second experiment (Section 6.3), we study the
performance of CCG on the newly generated medium-
sized instances and investigate how the performance
is related to parameters of the problem. In the third
experiment (Section 6.4), we study the effect of allow-
ing flexible departure times at the depot and waiting at
customers on the performance of CCG and on the total
operating time of the resulting solutions. Finally, we
compare LNS-ATCI as a stand-alone metaheuristic with
other state-of-the-art metaheuristics on benchmark in-
stances from the literature (Section 6.5).

We performed all tests on a desktop computer with
an AMD FX-6300 processor at 3.5 GHz with 8 GB of
RAM and running Windows 10 Pro. We used CPLEX
12.6.3 as a MILP solver to solve problems (29)–(33) in
Step 1, problems (19)–(22) in Steps 2 and 3, problems
(34)–(42) in Step 4, and the set-partitioning problem
detailed in Section 5.4. CCG is implemented in C and
LNS-ATCI in Java. Both codes and CPLEX were exe-
cuted using a single core. For CCG, we set a time limit
of two hours for all tests. All computing times are
reported in seconds.

6.1. Benchmark Instances
Several benchmark sets for the ConVRP are available
in the literature. Two sets are introduced in Groër,
Golden, and Wasil (2009) and differ with regard to
instance size (small and large) and the way the instances
are generated: Data set A contains five instances with
10 customers and five instances with 12 customers; the
planning horizon spans three days; customers have a
70% service frequency, that is, the probability that a
customer requires service on a given day is 0.7. Data set B
contains 12 instances with 50 to 199 customers. The in-
stances are derived from instances of the well-known
benchmark set for the distance-constrained capacitated
VRP presented in Christofides, Mingozzi, and Toth
(1979). Five of these instances have route-duration
constraints; the planning horizon spans five days;
customers have a 70% service frequency. Note that
Groër, Golden, and Wasil (2009) do not restrict the
maximum allowed time difference L on these instances

but report the maximum value that they obtain for each
instance. Because later works (Tarantilis, Stavropoulou,
and Repoussis 2012; Kovacs, Parragh, and Hartl 2014;
Kovacs et al. 2015) reported this maximum value as
a limit on L, we do the same to have comparable results.
Data set C contains 144 instances andwas introduced

by Kovacs, Parragh, and Hartl (2014) to investigate the
impact of varying the maximum allowed time differ-
ence and the service frequency. In addition to the in-
stances from data set B with 70% service frequency, the
authors generate instances with 50% and 90% service
frequency. Then, for each service frequency, they vary
the maximum allowed time difference and generate
four instances: the first has an unbounded value of L
(these instances are referred to as L∞ in the following),
and the other three are obtained by setting Lx � x ·Lmax,
where Lmax is the maximum arrival time difference ob-
tained by solving the instance L∞ and x � 0.4, 0.6, 0.8
(these instances are referred to as L0.4, L0.6, and L0.8).
Data sets A–C are used to assess the performance of

LNS-ATCI, but only data set A is suitable to assess the
performance of CCG because most of the instances
from the other sets are too large. Therefore, we create
an additional data set D with 144 instances with 20 to
30 customers by adapting the instances from data set C.
We leave the planning horizon of five days unchanged
because a weekly plan seems a reasonable setting. From
every subset representing one combination of service
frequency and maximum allowed time difference, we
select the instances labeled 6–8 from instances 1–12 be-
cause they have both route-duration and capacity con-
straints and create two new instances: the first containing
the first 20 customers and the second the first 30 cus-
tomers. In addition, we duplicate every new instance
by removing the route duration to study the influence
that this parameter has on the performance of our
approach.We round all distances to the second decimal
place to make our results practically independent of the
internal precision of the hardware and software used.
We name the instances according to the following
exemplary format: 6_19_0.5_0.4 means that the in-
stance is based on instance 6 from data set C, contains
19 customers that require service (some instances
contain customers that do not require service on any
day, and for clarity, we remove these customers from
the instance), has a service frequency of 50%, and has
a maximum allowed time difference of 40% of the
maximum arrival time difference obtained for any of
the customers in the unbounded instance in Kovacs,
Parragh, and Hartl (2014).

6.2. Comparison Between Compact Formulations
and CCG on Data Set A

In this section, we compare the computational per-
formance of the original compact formulation of Groër,
Golden, and Wasil (2009) (hereafter called GGW), our

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS 1035

improved compact formulation (1)–(12) (called GRS),
and CCG on data set A.

Table 1 reports the instance name (Inst) and the
optimal solution cost (z(Opt)). For both GGW andGRS,
we provide the lower bound obtained by the corre-
sponding linear relaxation in percentage of the opti-
mal solution (ΔLB) and the total computing time (t).
For CCG, we give the number of routes (|Φ| with
Φ � ∪d∈$Φd) and the initial number of clusters gen-
erated in Step 2 (|Ω̂′ |), lower bounds x∈ {z(LP1), z(LP2),
z(SP)} in percentage of the optimal solution (Δx), the
number of clusters left after executing steps 1–3 (|Ω̂′′ |),
the number of times step 4 is executed (|Ω|), and the total
computing time of CCG without considering the time to
computeUB (tnoUB) and including the time to computeUB
(ttot). Detailed results for CCG can be found in Table EC.1
of the e-companion of this paper.

As the computing times show, all three formula-
tions could solve all instances to optimality. However,
GRS outperforms GGW in terms of both lower bound
provided by the linear relaxation, which is on average
7.8% higher, and the total computing time (18.5 versus
573.1 seconds). CCG is significantly faster on average
than GRS even when taking into account the time to
compute UB. We also observe that the lower bounds
computed by CCG are of very good quality. In par-
ticular, note that the average optimality gaps of LP1
and LP2, which do not consider ATC, are quite small
(1.3% and 0.4%, respectively). Moreover, the number of
clusters for which ATC had to be included a posteriori
is very low (see column |Ω|). This suggests that DC in
many instances already implies ATC.

Finally, we assessed the impact of using GSECs by
removing them from GGW and GRS (not reported in
the table): without GSECs, we are still able to solve all
instances to optimality within the time limit, but the
average computing time increases significantly, that is,
for GGW from 573.1 to 1,378.3 seconds and for GRS
from 18.5 to 272.3 seconds.

6.3. Computational Results of CCG on Data Set D
In this section, we investigate the computational per-
formance of CCG on the 144 new instances of data
set D. In Table 2, panels A and B, the results are
aggregated according to the number of customers (|1|)
and the presence/absence of route-duration con-
straints (T � yes/no). Table 2, panel A reports results
based on different values of maximum allowed time
difference (L0.4, L0.6, L0.8, L∞), and Table 2, panel B is
based on different values of service frequency ($0.5,
$0.7, and$0.9). The values reported in each rowof Table 2,
panels A and B are averages over the corresponding
nine and 12 instances, respectively. Column Opt reports
the number of instances solved to optimality out of the
total number of instances in the group. Detailed results
can be found in Tables EC.2–EC.5 of the e-companion of
this paper.
The discussion of the results follows the order of the

columns in Table 2, panels A and B. We observe that
CCG solves 128 of the 144 instances to optimality. In-
stances with 30 customers (60 solved) are obviously
more difficult than instances with 20 customers (68
solved). The remaining 16 instances could not be solved
because either the time limit was reached (eight in-
stances) or CCG ran out of memory in step 2 while
generating the set of all routes Φ (eight instances). In-
stanceswithout a route-duration constraint are harder to
solve: 15 out of the 16 unsolved instances have unlim-
ited route duration, and all cases of insufficient mem-
ory occur for this type of instance. As Table 2, panel A
shows, instances that have a lower maximum allowed
time difference are more difficult: 10 of the 16 open in-
stances belong to the group L0.4, and the average com-
puting times increase significantly if the maximum
allowed time difference decreases. The latter effect is due
to the lower quality of the bounds provided by CCG.
Table 2, panel B shows that no similar effect can be
observed for the service frequency: six of the open in-
stances are in group $0.5, two in $0.7, and eight in $0.9.

Table 1. Computational Performance of GGW, GRS, and CCG on Data Set A

GGW GRS CCG

Inst. z(Opt) ΔLB t ΔLB t |Φ| |Ω̂′ | Δz(LP1) Δz(LP2) |Ω̂′′ | Δz(SP) |Ω| tnoUB ttot

1_10 142.03 61.0 9.4 66.5 3.0 305 744 100.0 100.0 5 100.0 2 0.1 5.1
2_10 121.07 57.3 2.0 69.4 0.9 760 951 97.6 100.0 9 100.0 2 0.1 2.6
3_10 149.41 53.5 10.4 61.8 6.3 1,221 774 100.0 100.0 10 100.0 2 0.1 2.7
4_10 150.89 58.5 13.0 62.7 2.1 753 801 100.0 100.0 9 100.0 2 0.1 2.5
5_10 132.31 63.9 636.3 71.2 13.1 718 810 95.9 98.8 14 100.0 4 0.2 3.6
1_12 171.02 57.2 1,524.1 66.4 70.5 852 2,150 98.9 99.9 19 100.0 2 0.1 3.3
2_12 111.54 64.5 4.5 72.1 3.9 657 3,743 99.5 99.5 11 100.0 2 0.1 3.2
3_12 145.69 51.4 179.1 59.2 31.2 1,573 3,666 99.7 99.7 10 100.0 4 0.2 3.0
4_12 166.37 51.7 3,286.3 60.1 38.7 928 2,317 97.1 98.6 47 100.0 13 0.5 3.9
5_12 140.42 52.8 66.0 60.5 15.2 1,188 3,412 98.5 99.5 11 100.0 5 0.2 3.3
Average 57.2 573.1 65.0 18.5 896 1,937 98.7 99.6 15 100.0 4 0.2 3.3

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
1036 Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS

The number of routes |Φ| and the initial number of
clusters |Ω̂′ | increases with the number of customers and
with unlimited route duration. As Table 2, panel A
shows, both values are independent of the group Lx
because the maximum allowed time difference is not
considered in this step. From Table 2, panel B, we ob-
serve that the number of routes increases drastically with
the service frequency because more customers request
service on any of the days. The number of clusters |Ω̂′ |
decreases with rising service frequency because there
are fewer ways to combine the routes to clusters that
respect the DC. Note that the values |Ω̂′ | provided for
|1| � 30 and T � no of groups $0.5 and $0.9 can be
compared with each other because, for both groups,
we could not generate the initial routes for the same
set of instances because of insufficient memory. This
does not hold for the comparison with $0.7.

CCG provides high-quality lower bounds: Δz(LP1)
is 98.9% averaged over all instances of data set D (com-
puted from the results reported in Tables EC.2–EC.5 of
the e-companion), Δz(LP2) is 99.0%, the lowest value for
any instance is 91.3% for both bounds, and for none of
the groups considered in Table 2, panels A and B the
bounds lie below 96.1%. The quality of the bounds
decreases for lower values of Lx, but there is no clear
relationship between their quality and the service fre-
quency $x, the number of customers, or the existence of
a limit on the route duration. Analogous effects can
be observed for the final number of clusters |Ω̂′′ |. It is
noteworthy how strongly the number of clusters can be
reduced because of step 3 when bounds are tight.
The final lower bounds Δz(SP) show that, for groups

with a maximum allowed time difference larger than
L0.4, we are able to solve all instances to optimality

Table 2. Overview of Results on Newly Generated Medium-Sized Instances of Data Set D

|1| T Opt |Φ| |Ω̂′ | Δz(LP1) Δz(LP2) |Ω̂′′ | Δz(SP) |Ω| tnoUB ttot

Panel A: Aggregated for different values of maximum allowed time difference (Lx)

L0.4
20 Yes 9/9 51,143 183,386 97.6 97.8 379 100.0 30 25.0 164.0
20 No 5/9 211,817 561,468 95.8 96.1 39,780 97.8 41 3,253.1 3,410.8
30 Yes 8/9 870,272 17,395,266 97.6 98.0 5,575 99.6 30 905.1 1,159.0
30 No 4/9 10,924,570 202,276,014 97.6 97.9 6,322 99.2 67 3,241.5 3,482.1

L0.6
20 Yes 9/9 51,143 183,386 99.4 99.5 47 100.0 6 0.7 105.8
20 No 9/9 211,817 561,468 98.6 98.7 100 100.0 10 485.0 633.5
30 Yes 9/9 870,272 17,395,266 99.3 99.5 200 100.0 6 55.2 290.7
30 No 7/9 10,924,570 202,276,014 99.1 99.2 104 100.0 15 324.8 541.0

L0.8
20 Yes 9/9 51,143 183,386 99.6 99.8 34 100.0 4 0.5 86.0
20 No 9/9 211,817 561,468 99.2 99.3 37 100.0 4 59.2 194.8
30 Yes 9/9 870,272 17,395,266 99.4 99.6 148 100.0 5 53.9 266.0
30 No 7/9 10,924,570 202,276,014 99.9 99.9 16 100.0 4 280.0 466.0
L∞
20 Yes 9/9 51,143 183,386 99.9 99.9 22 100.0 3 0.4 59.4
20 No 9/9 211,817 561,468 100.0 100.0 10 100.0 2 6.9 81.9
30 Yes 9/9 870,272 17,395,266 99.5 99.7 132 100.0 4 53.6 187.5
30 No 7/9 10,924,570 202,276,014 100.0 100.0 12 100.0 3 280.2 406.0

Panel B: Aggregated for different service frequencies ($x)

$0.5

20 Yes 12/12 3,831 372,678 99.3 99.4 47 100.0 12 2.0 76.3
20 No 11/12 6,239 699,534 97.8 97.8 27,938 99.4 29 882.5 970.5
30 Yes 12/12 43,382 47,459,139 99.5 99.6 141 100.0 15 105.4 260.0
30 No 7/12 93,653 205,949,404 98.9 98.9 2,059 99.9 49 1,077.5 1,208.1

$0.7

20 Yes 12/12 30,451 112,843 98.6 98.7 210 100.0 13 12.0 108.1
20 No 11/12 85,691 513,249 98.7 98.8 989 99.5 10 654.2 793.4
30 Yes 12/12 519,274 3,438,466 98.7 99.3 782 100.0 11 45.5 272.5
30 No 11/12 9,137,334 316,518,019 99.3 99.4 1,624 99.8 16 994.0 1,221.0

$0.9

20 Yes 12/12 119,146 64,637 99.4 99.6 104 100.0 7 5.8 127.0
20 No 10/12 543,521 471,622 98.7 98.9 1,019 99.4 4 1,316.4 1,476.9
30 Yes 11/12 2,048,161 1,288,192 98.5 98.7 3,619 99.7 8 650.0 894.9
30 No 7/12 24,436,342 27,239,617 99.2 99.4 1,152 99.7 6 1,042.3 1,243.6

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS 1037

whenever we have enough memory to generate the
initial clusters. For a maximum allowed time differ-
ence of L0.4, we obtain aggregated final bounds of at
least 97.8%. In addition, we find that for large values
of Lx or $x, the number of clusters for which ATC had
to be included a posteriori (see column |Ω|) is typically
very low; that is, the set-partitioning often quickly
identifies the optimal clusters in step 4. As already
discussed, removing the route duration or decreasing
the maximum allowed time difference makes the in-
stances more difficult, and thus, the total computing
time increases. On the other hand, there is no clear
relationship between the service frequency and the
total computing time.

Finally, we note that the performance of CCG strongly
depends on the number of clusters that need to be
generated, that is, how restrictive vehicle capacity and
route duration constraints are. If they are not binding,
the number of possible clusters for an instance with
30 customers exceeds one billion (230), which translates
to about 8 GB of RAM. The number of clusters in larger
instances can only be enumerated if capacity or route-
duration constraints are restrictive.

6.4. Effect of Flexible Departure Times at the Depot
and Waiting at Customers

The compact formulation GRS, the exact method CCG,
and the heuristic method LNS-ATCI address the ConVRP
as defined in Groër, Golden, andWasil (2009). Therefore,
the departure of a vehicle cannot be shifted, but all
vehicles are required to start their route at time zero,
and no waiting is allowed between customer visits.
These two constraints may be too restrictive in some
practical settings, and we are, therefore, interested in
the effect of relaxing them. In this section, we describe
howGRS andCCG canbe adapted to handle the variants
of the ConVRP in which

• Only the departure time at the depot is flexible
(Section 6.4.1). This variant was introduced by Kovacs,
Parragh, and Hartl (2014) as ConVRP with shiftable
starting times (ConVRP-SST).

• The departure time at the depot is flexible and
waiting at customers is allowed (Section 6.4.2).We denote
this variant as ConVRP-SST and waiting at customers
(ConVRP-SSTW).

In Section 6.4.3, we study the performance of CCG on
these variants, and we discuss the benefits of adding
such flexibility.

6.4.1. ConVRP with Shiftable Starting Times. In GRS,
constraints (7) are removed to allow shifts of the
departure time from the depot. In CCG, constraints (38)
are removed from problems (34)–(42) when computing
the cost gC of a given cluster C in step 4.

6.4.2. ConVRP with Shiftable Starting Times and Wait-
ing at Customers. To allow both shifts of the departure
time from the depot and waiting at customers, GRS is
changed as follows:
• An additional set of variables wid ∈R+ that rep-

resent the waiting time on day d∈$ at customer i∈1d
of the vehicle serving customer i is added.
• The objective function (1)must take the total waiting

time into account:

z � min
∑
d∈$

∑
k∈_

∑
(i,j)∈!d

t̂ijdxijkd +
∑
d∈$

∑
i∈1d

wid.

• Constraints (7) are removed to allow vehicles to
depart from the depot at any time.
• To take into account the waiting time while com-

puting the arrival time at a customer, constraints (8) are
changed as follows:

bid + (t̂ijd + T)∑
k∈_

xijkd + wid ≤ bjd + T

d∈$ i, j∈1d : i≠ j.

• To determine the waiting times wid, the following
set of constraints is added:

wid ≥ bjd − bid − t̂ijd − T + T
∑
k∈_

xijkd

d ∈$ i, j∈1d : i≠ j.

Similarly, in CCG, problems (34)–(42) are changed as
follows:
• An additional set of variables wid ∈R+ that rep-

resent the waiting time on day d ∈$ at customer i∈
1d ∩C of the vehicle serving customer i is added.
• The objective function (34) must take the waiting

times at customers into account:

gC � min
∑
d∈$

∑
(i,j)∈!d(C)

t̂ijdxijd +
∑
i∈C

∑
d∈$i

wid.

• Constraints (38) are removed.
• Constraints (39) are changed as follows:

bid + (t̂ijd + T)xijd + wid ≤ bjd + T

d ∈$ i, j∈1d ∩C : i≠ j.

• The following set of constraints is added:

wid ≥ bjd − bid − t̂ijd − T + Txijd
d∈$ i, j∈1d ∩C : i≠ j.

6.4.3. Computational Results. To study the impact of
the described relaxations on the performance of CCG
and on solution costs, Table 3 compares the results
of CCG on the instances of data set D interpreted
as instances of the ConVRP, the ConVRP-SST, and
the ConVRP-SSTW, respectively. The results are again

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
1038 Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS

aggregated according to the number of customers
(|1|) and the presence/absence of route-duration con-
straints (T � yes/no). For each group, we report the
number of instances solved to optimality (Opt) and
average values (considering only the instances that
are solved to optimality for every problem variant)
for |Ω| and tnoUB. In addition, for the ConVRP-SST
and the ConVRP-SSTW, we report the average gap
between the final upper bound obtained and the upper
bound for the ConVRP (Δz). Because we use the same
initial upper bound for all variants, the values |Φ|,
|Ω̂′ |, and |Ω̂′′ | reported in Table 1 are the same in the
three variants considered and, therefore, are not reported.

For bothConVRP-SST andConVRP-SSTW, thenumber
of instances solved to optimality increases: only one
instancewith 20 customers and route-duration constraints
and five instances with 30 customers and route-duration
constraints remain unsolved. Furthermore, |Ω| is re-
duced by a factor of two to five. Allowing flexible de-
parture times at the depot leads to cost savings between
roughly −0.3% and −0.9%; the largest savings are achieved
when the route duration is not restricted. Waiting at
customers provides only minor benefits for one of the
groups. Detailed results can be found in Tables EC.6
and EC.7 of the e-companion of this paper.

6.5. Computational Results of LNS-ATCI
In this section, we investigate the performance of LNS-
ATCI as a stand-alone method. First, we show how the
components of LNS-ATCI contribute to solution quality
and runtimes. In Table 4, we report the results obtained
when solving data set B with (1) the described method
using a total of ηtotal � 25,000 iterations (LNS-ATCI–25k),
(2) LNS-ATCI–25k without using the set-partitioning
formulation (w/o SP), and (3) LNS-ATCI–25k without
the ATC improvement procedure (w/o ATCI). For each
variant, we report the average percentage gap of the
best solution found in 10 runs to the previous best-known
solution (BKS) as Δzb, the average gap of the average
solution value of the 10 runs to the BKS (Δza), and the
average computation time in seconds (t). We find that
the ATC improvement procedure has a strong positive
impact on the solution quality and robustness of our
method. In comparison, the set-partitioning compo-
nent only slightly improves the two measures. In the
following experiments, we put maximum emphasis

on solution quality and robustness and, thus, keep the
ATC and SP components. Clearly, in other applications,
it could be more beneficial to remove the SP component
to achieve faster runtime.
Second, we compare LNS-ATCI to the approaches

from the literature on data set B; for the sake of conciseness,
we limit the comparison with the two best-performing
approaches, that is, the template-basedALNS of Kovacs,
Parragh, and Hartl (2014) (denoted as KPH) and the
LNS method of Kovacs et al. (2015) (denoted as KGHP).
Third, we study the performance of LNS-ATCI in com-
parison with KPH on data set C (no results are available
for KGHP) and assess the influence of different service
frequencies $x and maximum allowed time differ-
ences Lx on the comparison.
Table 5 shows the results for data set B. Two different

versions of LNS-ATCI are studied: LNS-ATCI–25k
using a total of ηtotal � iterations, and LNS-ATCI–5k
using a reduced number of iterations ηtotal � 5,000. For
each instance, we report the name and the previous
BKS. For each solution method, we report Δzb, Δza, and
t as introduced. In addition, the best solution that we
found during the overall testing of our method and its
gap to the BKS are reported in columns LNS−ATCI. For
each instance, the best solution found by any of the
tested methods is marked in bold.
The performance of LNS-ATCI on data set B is very

convincing. LNS-ATCI–25k improves the previous BKS
on 10 out of the 12 instances (for two of the instances,
the improvement is above 2%) and matches it on the
remaining two. The average improvement based on the
best run is nearly 1%, and even the average of the runs
shows a negative gap of −0.3% to the previous BKS. Con-
cerning the comparison of the runtimes of the different
solution methods, we think that a relatively fair com-
parison is possible because all algorithms were tested on
modern desktop computers with processors of similar
speed (Intel XeonX5550 at 2.67GHz forKPHandKGHP).
The runtime of LNS-ATCI–25k is approximately five
times the runtimes of the comparison methods; how-
ever, the runtime stays below eight minutes for all in-
stances, whichwe deem very reasonable for amultiperiod
problem with up to 199 customers and five periods from
a practical perspective.
The fast variant of our algorithm, LNS-ATCI–5k, has

roughly the same runtimes as the comparison methods

Table 3. Comparison of Results on the ConVRP, the ConVRP-SST, and the ConVRP-SSTW on Data Set D

ConVRP ConVRP-SST ConVRP-SSTW

|1| T Opt |Ω| tnoUB Opt Δz |Ω| tnoUB Opt Δz |Ω| tnoUB

20 Yes 36/36 11 6.6 36/36 −0.56 3 0.6 36/36 −0.56 3 0.6
20 No 33/36 15 382.9 35/36 −0.89 3 124.5 35/36 −0.92 3 26.3
30 Yes 35/36 11 76.5 36/36 −0.29 5 63.8 36/36 −0.29 5 64.3
30 No 26/36 15 317.8 31/36 −0.62 4 269.3 31/36 −0.62 4 275.3

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS 1039

but is able to improve on the previous BKS for nine of
the 12 instances, matches it on two, and yields a gap of
0.1% on one instance. On average, LNS-ATCI–5k still
shows a negative gap to the previous BKS of −0.6%.
Finally, during the overall testing, we find newBKS for all
instances with an average gap to the previous BKS of
−1.0%. On three instances, we obtain significant impro-
vements of the solution quality with gaps above −2.3%.

Table 6 shows the results for data set C. Only aver-
ages over 10 runs are reported by KGHP, so we perform
the same number of runs and conduct the comparison
based on averages: Δza reports the percentage gap be-
tween the average objective value of LNS-ATCI–25k
and that of KPH; that is, Δza � (za(LNS-ATCI–25k) −
za (KPH))/za(KPH). Moreover, we report the percentage
gap of the average maximum arrival-time difference
between any two visits to a customer in column Δbmax

a ;
that is, for every run, we memorize the maximum ar-
rival time difference that occurs for any of the cus-
tomers in the best solution obtained during that run;
then, we average these values over all runs and calculate
the gap in percentage to the corresponding value re-
ported for KPH. To provide comparison values for fu-
ture researchers, we additionally provide the best objec-
tive function value obtained during 10 runs in column zb.

We find that the solution quality of LNS-ATCI–25k
is clearly superior to that of KPH: the average gap
is negative for 133 of 144 instances with an average

improvement of −12.4%. The largest gaps are obtained
for small values of Lx; depending on the service fre-
quency, the gaps lie between −44.2% and −32.2% for
L0.4. With regards to the maximum arrival-time dif-
ference bmax

a , we observe a nonnegative gap between
LNS-ATCI and KPH for all groups. This suggests that
our method is able to better utilize the maximum
allowed time difference to find high-quality solutions.
Summarizing, the results indicate that, contrary to

the template-based approach of KPH, LNS-ATCI is also
suitable for low values of L. As can be expected, the
difference between the two methods is smaller for a
high service frequency of$x because instances inwhich
days resemble each other with regards to the customers
that have to be served are beneficial for the template
concept.

7. Summary and Conclusion
In this paper, we address the ConVRP and present the
first exact solution method and a heuristic that repre-
sent the new state-of-the-art solution methods to solve
the problem.
Unlike most of the state-of-the-art exact methods for

VRPs that rely on route-based formulations, the pro-
posed exact method is based on a formulation in which
variables represent a set of customers (called a cluster)
assigned to the same vehicle over the planning horizon.
We first generate the entire set of clusters and then
eliminate those clusters that cannot belong to any opti-
mal ConVRP solution by computing gradually stronger
lower bounds to the problem. The main idea of our
algorithm is that the DC consistency is implied by the
definition of the clusters, and the ATC is iteratively
imposed on a small number of clusters only when nec-
essary. The computational experiments show that,
because of the strength of the computed lower bounds,

Table 4. Contribution of Heuristic Components Shown on
Data Set B

LNS-ATCI-25k Without SP Without ATCI

Δzb Δza t Δzb Δza t Δzb Δza t

Average −0.9 −0.3 217.3 −0.8 0.2 129.5 0.3 2.3 151.3

Table 5. Comparison of LNS-ATCI to the Best-Performing Approaches from the Literature: KPH (Kovacs, Parragh, and Hartl
2014) and KGHP (Kovacs et al. 2015) on Data Set B

KPH KGHP LNS-ATCI–25k LNS-ATCI–5k LNS−ATCI

Inst. BKS Δzb Δza t Δzb Δza t Δzb Δza t Δzb Δza t z Δz

1_50_0.7 2,124.21 0.0 3.3 5.5 0.0 0.4 15.1 0.0 0.2 40.5 0.0 0.9 9.2 2,121.84 −0.1
2_75_0.7 3,540.80 1.7 1.8 14.7 0.0 1.4 18.8 −1.3 −0.9 86.9 −1.0 0.2 16.9 3,481.72 −1.7
3_100_0.7 3,280.47 1.4 1.8 25.6 0.0 0.9 40.2 −0.1 0.5 195.3 0.1 1.5 33.6 3,278.36 −0.1
4_149_0,7 4,473.31 1.9 2.8 84.3 0.0 1.9 62.7 −1.4 −0.2 369.7 −1.4 1.3 80.1 4,355.47 −2.6
5_199_0.7 5,632.22 0.6 0.9 122.2 0.0 0.8 87.3 −2.6 −0.9 477.6 −0.3 0.7 97.7 5,480.00 −2.7
6_49_0.7 4,051.48 0.0 0.0 6.6 0.5 0.6 14.6 0.0 0.0 31.7 0.0 0.1 6.9 4,051.48 0.0
7_75_0.7 6,673.61 1.5 2.0 18.3 0.0 0.6 19.7 −0.4 −0.4 73.6 −0.4 0.5 16.4 6,645.05 −0.4
8_100_0.7 7,126.29 0.0 0.9 32.2 0.0 1.0 31.3 −0.5 −0.1 145.5 −0.4 0.4 30.1 7,094.05 −0.5
9_150_0.7 10,381.90 0.0 0.7 97.4 0.1 0.6 50.2 −0.5 −0.1 367.6 −0.6 0.1 66.8 10,318.99 −0.6
10_198_0.7 12,955.10 1.1 2.2 146.3 0.0 0.7 78.7 −0.9 0.1 467.0 −0.2 0.3 83.9 12,839.78 −0.9
11_119_0.7 4,471.22 0.3 0.3 36.0 0.0 2.6 83.6 −0.5 0.5 227.1 −0.3 3.7 119.1 4,447.45 −0.5
12_100_0.7 3,497.93 0.0 0.0 25.6 0.7 2.5 27.4 −2.3 −2.0 125.9 −2.1 0.3 27.2 3,416.08 −2.3
Average 0.7 1.4 51.2 0.1 1.2 44.1 −0.9 −0.3 217.3 −0.6 0.8 49.0 −1.0

Note. Best solutions are indicated in bold.

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
1040 Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS

the proposed exact method can solve, within reasonable
amounts of computing times, instances with up to
30 customers and a five-day planning horizon. The
performance of the method is not affected by the service
frequency in the instances, and themethod is particularly
effective if ATC constraints are not extremely tight.
Furthermore, we describe how the method can be
adapted to solve problem variants that allow flexible
departure times at the depot and waiting at customers.

In addition, we present an LNS that is used in com-
bination with the exact method to find optimal ConVRP
solutions and as a stand-alone heuristic to find high-
quality solutions in short runtimes. Themethod embeds

(1) a suitable penalty mechanism to deal with infeasible
solutions, (2) a repair procedure to improve the ATC,
and (3) the solution of a set-partitioning problem to en-
hance solution quality. The computational experiments
show that our LNS is able to clearly improve the solution
quality compared with previously published heuristics
on benchmark instances from the literature, especially if
ATC constraints are tight.

Acknowledgments
The authors are grateful to the associate editor and the
anonymous referees for their insightful comments that con-
tributed to improve the quality of the paper.

Table 6. Comparison of LNS-ATCI–25k to KPH (Kovacs, Parragh, and Hartl 2014) on Data Set C

L∞ L0.8 L0.6 L0.4

Inst. zb Δza Δbmax
a zb Δza Δbmax

a zb Δza Δbmax
a zb Δza Δbmax

a

$0.5

1_50_0.5 1,616.37 −2.0 56.7 1,628.76 −2.4 −4.0 1,641.51 −6.0 4.0 1,696.33 −7.6 1.5
2_75_0.5 2,554.83 −0.7 66.7 2,554.94 −1.2 9.4 2,563.74 −1.1 −2.2 2,590.12 −27.5 6.1
3_100_0.5 2,632.43 −1.7 158.6 2,632.96 −1.8 6.4 2,658.19 −1.5 0.9 2,716.13 −36.7 2.1
4_149_0.5 3,317.49 −1.7 103.2 3,333.52 −1.3 2.1 3,337.12 −9.5 −3.3 3,366.54 −75.7 7.6
5_199_0.5 3,986.56 −0.2 164.0 3,988.21 −1.5 1.9 3,994.09 −2.8 −0.6 4,098.44 −79.7 27.4
6_49_0.5 2,863.55 −0.2 65.8 2,872.94 −0.4 3.5 2,889.42 −1.8 2.3 2,943.77 −22.8 5.5
7_75_0.5 4,632.31 −1.3 42.8 4,637.52 −1.2 1.9 4,642.50 −3.4 −3.1 4,662.84 −44.1 16.2
8_100_0.5 5,332.55 −0.3 109.0 5,335.32 −0.2 0.8 5,342.04 −0.5 −1.1 5,384.56 −45.4 3.4
9_150_0.5 7,347.40 −1.1 70.5 7,352.24 −1.5 2.8 7,354.43 −4.5 0.7 7,402.12 −52.7 4.9
10_198_0.5 9,267.06 −0.5 99.7 9,238.96 −0.8 −0.3 9,363.47 −52.9 1.8 9,576.16 −60.2 2.3
11_119_0.5 3,245.08 −1.3 208.2 3,253.59 −3.5 36.2 3,256.72 −3.6 −1.7 3,258.40 −7.0 −1.4
12_100_0.5 2,835.65 −1.4 339.4 2,845.27 −2.0 8.4 2,847.79 −2.0 2.8 2,895.90 −71.5 27.6
Average −1.0 123.7 −1.5 5.8 −7.5 0.0 −44.2 8.6

$0.7

1_50_0.7 2,105.39 −0.5 183.2 2,110.59 −0.5 −9.2 2,118.97 −1.0 2.2 2,137.65 −29.0 6.1
2_75_0.7 3,481.82 −2.4 113.9 3,481.72 −1.8 −1.3 3,513.81 −3.4 −0.3 3,543.00 −55.2 2.0
3_100_0.7 3,266.77 −1.0 220.7 3,272.50 −1.1 2.0 3,283.23 −0.6 0.9 3,325.92 −66.8 7.1
4_149_0,7 4,346.38 −2.5 249.8 4,408.77 −4.1 0.1 4,479.40 −26.1 1.8 4,640.36 −81.9 −22.0
5_199_0.7 5,464.52 −2.8 217.0 5,488.70 −2.2 9.9 5,525.68 −2.7 5.6 5,571.35 −13.9 0.6
6_49_0.7 4,048.96 −0.1 129.0 4,051.48 0.0 −2.7 4,062.70 0.0 0.1 4,102.95 −5.9 −1.5
7_75_0.7 6,645.05 −2.1 77.3 6,645.95 −2.6 5.1 6,658.68 −3.7 −4.1 6,676.41 −35.4 2.1
8_100_0.7 7,092.22 −1.4 195.4 7,097.27 −1.4 3.6 7,125.73 −7.6 0.4 7,321.12 −55.3 2.5
9_150_0.7 10,316.71 −1.5 58.4 10,327.97 −1.4 0.4 10,339.81 −3.0 −1.3 10,373.95 −47.7 1.4
10_198_0.7 12,827.08 −2.1 117.4 12,909.74 −2.0 −1.8 12,912.85 −17.8 −0.4 13,200.08 −60.3 4.0
11_119_0.7 4,443.76 −0.7 843.5 4,450.56 3.3 −2.2 4,458.83 −10.6 0.9 4,950.48 −86.9 39.2
12_100_0.7 3,408.55 −3.0 325.5 3,416.08 −2.9 2.6 3,418.03 −.5 0.4 3,489.39 −80.7 10.4
Average −1.7 227.6 −1.4 0.6 −6.6 0.5 −51.6 4.3

$0.9

1_50_0.9 2,478.84 −0.3 128.9 2,488.27 −0.1 −8.8 2,493.14 −0.1 4.1 2,507.37 −21.1 −4.5
2_75_0.9 4,001.08 −0.9 232.2 4,003.68 −0.6 −2.4 4,007.29 −1.8 10.2 4,044.71 −8.9 7.7
3_100_0.9 3,974.74 −0.4 282.9 3,988.08 0.1 −0.4 4,001.64 −0.3 −3.1 4,039.43 −5.8 2.6
4_149_0.9 4,942.23 −0.8 373.6 4,971.81 −0.1 1.7 4,929.50 −0.2 3.8 5,108.54 −79.8 20.1
5_199_0.9 6,376.09 −0.6 371.0 6,399.05 −3.5 10.1 6,397.04 −7.0 −7.3 6,453.19 −76.1 45.0
6_49_0.9 4,751.79 −0.2 111.8 4,761.17 0.0 7.2 4,768.31 −1.0 0.6 4,877.14 −18.9 −0.8
7_75_0.9 7,705.73 −0.5 53.5 7,706.18 −0.4 5.2 7,706.18 −0.3 −6.2 7,718.94 −2.8 1.3
8_100_0.9 8,733.72 0.0 196.3 8,673.73 0.0 −3.2 8,776.89 −0.6 2.1 8,835.97 −29.3 3.9
9_150_0.9 12,377.60 −0.5 203.5 12,391.43 −0.4 −1.1 12,442.23 −7.4 0.2 12,618.92 −58.6 5.5
10_198_0.9 15,820.63 −0.4 321.9 15,824.39 −0.4 0.9 15,828.35 −11.0 0.8 16,212.92 −65.6 2.5
11_119_0.9 4,986.96 7.7 866.3 4,975.01 9.0 −7.2 5,452.57 9.9 −6.0 5,496.98 −16.3 −1.3
12_100_0.9 4,011.73 0.9 524.4 4,013.50 0.8 −2.3 4,014.73 0.3 35.8 4,024.41 −3.4 3.5
Average 0.3 305.5 0.4 0.0 −1.6 2.9 −32.2 7.1

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS 1041

References
Adulyasak Y, Cordeau JF, Jans R (2014) Optimization-based adaptive

large neighborhood search for the production routing problem.
Transportation Sci. 48(1):20–45.

Baldacci R, Mingozzi A, Roberti R (2011) New route relaxation and
pricing strategies for the vehicle routing problem. Oper. Res.
59(5):1269–1283.

ChristofidesN,MingozziA, Toth P (1979) The vehicle routingproblem.
Christofides N, Mingozzi A, Toth P, Sandi C, eds. Combinatorial
Optimization (Wiley, Chichester, UK), 315–338.

Clarke G, Wright J (1964) Scheduling of vehicles from a central depot
to a number of delivery points. Oper. Res. 12(4):568–581.

Contardo C, Martinelli R (2014) A new exact algorithm for the multi-
depot vehicle routing problem under capacity and route length
constraints. Discrete Optim. 12:129–146.

Cordeau JF, Laporte G (2003) A tabu search heuristic for the static
multi-vehicle dial-a-ride problem. Transportation Res. Methodol-
ogy 37(6):579–594.

Cordeau JF, LaporteG,MercierA (2001)Aunified tabu search heuristic
for vehicle routing problems with time windows. J. Oper. Res. Soc.
52(8):928–936.

Dabia S, Ropke S, vanWoensel T, Kok TD (2013) Branch and price for
the time-dependent vehicle routing problemwith timewindows.
Transportation Sci. 47(3):380–396.

Dayarian I, Crainic TG, Gendreau M, Rei W (2015) A branch-and-
price approach for a multi-period vehicle routing problem.
Comput. Oper. Res. 55:167–184.

Dayarian I, Crainic TG, Gendreau M, Rei W (2016) An adaptive large-
neighborhood search heuristic for a multi-period vehicle routing
problem. Transportation Res. Logist. Transportation Rev. 95:95–123.

Feillet D, Garaix T, Lehuédé F, Péton O, Quadri D (2014) A new
consistent vehicle routing problem for the transportation of
people with disabilities. Networks 63(3):211–224.

Goeke D, Schneider M (2015) Routing a mixed fleet of electric and
conventional vehicles. Eur. J. Oper. Res. 245(1):81–99.

Groër C, Golden B, Wasil E (2009) The consistent vehicle routing
problem. Manufacturing Service Oper. Management 11(4):630–643.

Jepsen M, Petersen B, Spoorendonk S, Pisinger D (2008) Subset-row
inequalities applied to the vehicle-routing problem with time
windows. Oper. Res. 56(2):497–511.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simu-
lated annealing. Science 220(4598):671–680.

Kovacs AA, Parragh SN, Hartl RF (2014) A template-based adaptive
large neighborhood search for the consistent vehicle routing
problem. Networks 63(1):60–81.

Kovacs AA, Parragh SN, Hartl RF (2015) The multi-objective gen-
eralized consistent vehicle routing problem. Eur. J. Oper. Res.
247(2):441–458.

Kovacs AA, Golden BL, Hartl RF, Parragh SN (2015) The generalized
consistent vehicle routing problem. Transportation Sci. 49(4):
796–816.

Kovacs AA, Hartl RF, Parragh SN, Golden BL (2014) Vehicle routing
problems in which consistency considerations are important:
A survey. Networks 64(3):192–213.

Lian K, Milburn AB, Rardin RL (2016) An improved multi-
directional local search algorithm for the multi-objective
consistent vehicle routing problem. IIE Trans. 48(10):
975–992.

Masson R, Lehuédé F, Péton O (2013) An adaptive large neighbor-
hood search for the pickup and delivery problem with transfers.
Transportation Sci. 47(3):344–355.

Pecin D, Contardo C, Desaulniers G, Uchoa E (2017a) New en-
hancements for the exact solution of the vehicle routing
problem with time windows. INFORMS J. Comput. 29(3):
489–502.

Pecin D, Pessoa A, Poggi M, Uchoa E (2017b) Improved branch-cut-
and-price for capacitated vehicle routing. Math. Programming
Comput. 9(1):61–100.

Ropke S, Pisinger D (2006a) An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time win-
dows. Transportation Sci. 40(4):455–472.

Ropke S, Pisinger D (2006b) A unified heuristic for a large class of
vehicle routing problems with backhauls. Eur. J. Oper. Res.
171(3):750–775.

Sarstedt M, Mooi E (2014) Cluster analysis. A Concise Guide to Market
Research: The Process, Data, and Methods Using IBM SPSS Statistics
(Springer, Berlin, Heidelberg), 273–324.

Shaw P (1998) Using constraint programming and local search
methods to solve vehicle routing problems. Maher M, Puget
JF, eds. Principles and Practice of Constraint Programming, Lec-
ture Notes in Computer Science, vol. 1520 (Springer, London),
417–431.

Subramanian A, Uchoa E, Ochi LS (2013) A hybrid algorithm for
a class of vehicle routing problems. Comput. Oper. Res. 40(10):
2519–2531.

Subramanyam A, Gounaris CE (2016) A branch-and-cut framework
for the consistent traveling salesman problem. Eur. J. Oper. Res.
248(2):384–395.

SubramanyamA, Gounaris CE (2017) A decomposition algorithm for
the consistent traveling salesman problem with vehicle idling.
Transportation Sci. 52(2):386–401.

Sungur I, Ren Y, Ordóñez F, Dessouky M, Zhong H (2010) A model
and algorithm for the courier delivery problemwith uncertainty.
Transportation Sci. 44(2):193–205.

Tarantilis C, Stavropoulou F, Repoussis P (2012) A template-based
tabu search algorithm for the consistent vehicle routing problem.
Expert Systems Appl. 39(4):4233–4239.

Goeke, Roberti, and Schneider: Exact/Heuristic Solution of ConVRP
1042 Transportation Science, 2019, vol. 53, no. 4, pp. 1023–1042, © 2019 INFORMS

	Exact and Heuristic Solution of the Consistent Vehicle-Routing Problem
	Introduction
	Problem Definition
	A New Compact Formulation for the ConVRP
	An Exact Method for the ConVRP
	Large Neighborhood Search for the ConVRP
	Numerical Studies
	Summary and Conclusion

