5,971 research outputs found

    SqFreeEVAL: An (almost) optimal real-root isolation algorithm

    Full text link
    Let f be a univariate polynomial with real coefficients, f in R[X]. Subdivision algorithms based on algebraic techniques (e.g., Sturm or Descartes methods) are widely used for isolating the real roots of f in a given interval. In this paper, we consider a simple subdivision algorithm whose primitives are purely numerical (e.g., function evaluation). The complexity of this algorithm is adaptive because the algorithm makes decisions based on local data. The complexity analysis of adaptive algorithms (and this algorithm in particular) is a new challenge for computer science. In this paper, we compute the size of the subdivision tree for the SqFreeEVAL algorithm. The SqFreeEVAL algorithm is an evaluation-based numerical algorithm which is well-known in several communities. The algorithm itself is simple, but prior attempts to compute its complexity have proven to be quite technical and have yielded sub-optimal results. Our main result is a simple O(d(L+ln d)) bound on the size of the subdivision tree for the SqFreeEVAL algorithm on the benchmark problem of isolating all real roots of an integer polynomial f of degree d and whose coefficients can be written with at most L bits. Our proof uses two amortization-based techniques: First, we use the algebraic amortization technique of the standard Mahler-Davenport root bounds to interpret the integral in terms of d and L. Second, we use a continuous amortization technique based on an integral to bound the size of the subdivision tree. This paper is the first to use the novel analysis technique of continuous amortization to derive state of the art complexity bounds

    On the Complexity of Real Root Isolation

    Full text link
    We introduce a new approach to isolate the real roots of a square-free polynomial F=∑i=0nAixiF=\sum_{i=0}^n A_i x^i with real coefficients. It is assumed that each coefficient of FF can be approximated to any specified error bound. The presented method is exact, complete and deterministic. Due to its similarities to the Descartes method, we also consider it practical and easy to implement. Compared to previous approaches, our new method achieves a significantly better bit complexity. It is further shown that the hardness of isolating the real roots of FF is exclusively determined by the geometry of the roots and not by the complexity or the size of the coefficients. For the special case where FF has integer coefficients of maximal bitsize τ\tau, our bound on the bit complexity writes as O~(n3τ2)\tilde{O}(n^3\tau^2) which improves the best bounds known for existing practical algorithms by a factor of n=degFn=deg F. The crucial idea underlying the new approach is to run an approximate version of the Descartes method, where, in each subdivision step, we only consider approximations of the intermediate results to a certain precision. We give an upper bound on the maximal precision that is needed for isolating the roots of FF. For integer polynomials, this bound is by a factor nn lower than that of the precision needed when using exact arithmetic explaining the improved bound on the bit complexity

    Near-optimal perfectly matched layers for indefinite Helmholtz problems

    Full text link
    A new construction of an absorbing boundary condition for indefinite Helmholtz problems on unbounded domains is presented. This construction is based on a near-best uniform rational interpolant of the inverse square root function on the union of a negative and positive real interval, designed with the help of a classical result by Zolotarev. Using Krein's interpretation of a Stieltjes continued fraction, this interpolant can be converted into a three-term finite difference discretization of a perfectly matched layer (PML) which converges exponentially fast in the number of grid points. The convergence rate is asymptotically optimal for both propagative and evanescent wave modes. Several numerical experiments and illustrations are included.Comment: Accepted for publication in SIAM Review. To appear 201

    The Rational Hybrid Monte Carlo Algorithm

    Get PDF
    The past few years have seen considerable progress in algorithmic development for the generation of gauge fields including the effects of dynamical fermions. The Rational Hybrid Monte Carlo (RHMC) algorithm, where Hybrid Monte Carlo is performed using a rational approximation in place the usual inverse quark matrix kernel is one of these developments. This algorithm has been found to be extremely beneficial in many areas of lattice QCD (chiral fermions, finite temperature, Wilson fermions etc.). We review the algorithm and some of these benefits, and we compare against other recent algorithm developements. We conclude with an update of the Berlin wall plot comparing costs of all popular fermion formulations.Comment: 15 pages. Proceedings from Lattice 200

    Computing Real Roots of Real Polynomials

    Full text link
    Computing the roots of a univariate polynomial is a fundamental and long-studied problem of computational algebra with applications in mathematics, engineering, computer science, and the natural sciences. For isolating as well as for approximating all complex roots, the best algorithm known is based on an almost optimal method for approximate polynomial factorization, introduced by Pan in 2002. Pan's factorization algorithm goes back to the splitting circle method from Schoenhage in 1982. The main drawbacks of Pan's method are that it is quite involved and that all roots have to be computed at the same time. For the important special case, where only the real roots have to be computed, much simpler methods are used in practice; however, they considerably lag behind Pan's method with respect to complexity. In this paper, we resolve this discrepancy by introducing a hybrid of the Descartes method and Newton iteration, denoted ANEWDSC, which is simpler than Pan's method, but achieves a run-time comparable to it. Our algorithm computes isolating intervals for the real roots of any real square-free polynomial, given by an oracle that provides arbitrary good approximations of the polynomial's coefficients. ANEWDSC can also be used to only isolate the roots in a given interval and to refine the isolating intervals to an arbitrary small size; it achieves near optimal complexity for the latter task.Comment: to appear in the Journal of Symbolic Computatio
    • …
    corecore