3,171 research outputs found

    Exact Weight Subgraphs and the k-Sum Conjecture

    Full text link
    We consider the Exact-Weight-H problem of finding a (not necessarily induced) subgraph H of weight 0 in an edge-weighted graph G. We show that for every H, the complexity of this problem is strongly related to that of the infamous k-Sum problem. In particular, we show that under the k-Sum Conjecture, we can achieve tight upper and lower bounds for the Exact-Weight-H problem for various subgraphs H such as matching, star, path, and cycle. One interesting consequence is that improving on the O(n^3) upper bound for Exact-Weight-4-Path or Exact-Weight-5-Path will imply improved algorithms for 3-Sum, 5-Sum, All-Pairs Shortest Paths and other fundamental problems. This is in sharp contrast to the minimum-weight and (unweighted) detection versions, which can be solved easily in time O(n^2). We also show that a faster algorithm for any of the following three problems would yield faster algorithms for the others: 3-Sum, Exact-Weight-3-Matching, and Exact-Weight-3-Star

    High-temperature expansion for Ising models on quasiperiodic tilings

    Full text link
    We consider high-temperature expansions for the free energy of zero-field Ising models on planar quasiperiodic graphs. For the Penrose and the octagonal Ammann-Beenker tiling, we compute the expansion coefficients up to 18th order. As a by-product, we obtain exact vertex-averaged numbers of self-avoiding polygons on these quasiperiodic graphs. In addition, we analyze periodic approximants by computing the partition function via the Kac-Ward determinant. For the critical properties, we find complete agreement with the commonly accepted conjecture that the models under consideration belong to the same universality class as those on periodic two-dimensional lattices.Comment: 24 pages, 8 figures (EPS), uses IOP styles (included

    Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions

    Get PDF
    I show that there exist universal constants C(r)<C(r) < \infty such that, for all loopless graphs GG of maximum degree r\le r, the zeros (real or complex) of the chromatic polynomial PG(q)P_G(q) lie in the disc q<C(r)|q| < C(r). Furthermore, C(r)7.963906...rC(r) \le 7.963906... r. This result is a corollary of a more general result on the zeros of the Potts-model partition function ZG(q,ve)Z_G(q, {v_e}) in the complex antiferromagnetic regime 1+ve1|1 + v_e| \le 1. The proof is based on a transformation of the Whitney-Tutte-Fortuin-Kasteleyn representation of ZG(q,ve)Z_G(q, {v_e}) to a polymer gas, followed by verification of the Dobrushin-Koteck\'y-Preiss condition for nonvanishing of a polymer-model partition function. I also show that, for all loopless graphs GG of second-largest degree r\le r, the zeros of PG(q)P_G(q) lie in the disc q<C(r)+1|q| < C(r) + 1. Along the way, I give a simple proof of a generalized (multivariate) Brown-Colbourn conjecture on the zeros of the reliability polynomial for the special case of series-parallel graphs.Comment: 47 pages (LaTeX). Revised version contains slightly simplified proofs of Propositions 4.2 and 4.5. Version 3 fixes a silly error in my proof of Proposition 4.1, and adds related discussion. To appear in Combinatorics, Probability & Computin

    Average case polyhedral complexity of the maximum stable set problem

    Full text link
    We study the minimum number of constraints needed to formulate random instances of the maximum stable set problem via linear programs (LPs), in two distinct models. In the uniform model, the constraints of the LP are not allowed to depend on the input graph, which should be encoded solely in the objective function. There we prove a 2Ω(n/logn)2^{\Omega(n/ \log n)} lower bound with probability at least 122n1 - 2^{-2^n} for every LP that is exact for a randomly selected set of instances; each graph on at most n vertices being selected independently with probability p2(n/42)+np \geq 2^{-\binom{n/4}{2}+n}. In the non-uniform model, the constraints of the LP may depend on the input graph, but we allow weights on the vertices. The input graph is sampled according to the G(n, p) model. There we obtain upper and lower bounds holding with high probability for various ranges of p. We obtain a super-polynomial lower bound all the way from p=Ω(log6+ε/n)p = \Omega(\log^{6+\varepsilon} / n) to p=o(1/logn)p = o (1 / \log n). Our upper bound is close to this as there is only an essentially quadratic gap in the exponent, which currently also exists in the worst-case model. Finally, we state a conjecture that would close this gap, both in the average-case and worst-case models

    Polymers and percolation in two dimensions and twisted N=2 supersymmetry

    Full text link
    It is shown how twisted N=2 (k=1) provides for the first time a complete conformal field theory description of the usual geometrical phase transitions in two dimensions, like polymers, percolation or brownian motion. In particular, four point functions of operators with half integer Kac labels are computed, together with geometrical operator products. In addition to Ramond and Neveu Schwartz, a sector with quarter twists has to be introduced. The role of fermions and their various sectors is geometrically interpreted, modular invariant partition functions are built. The presence of twisted N=2 is traced back to the Parisi Sourlas supersymmetry. It is shown that N=2 leads also to new non trivial predictions; for instance the fractal dimension of the percolation backbone in two dimensions is conjectured to be D=25/16, in good agreement with numerical studies.Comment: 42 pages (without figures
    corecore