103 research outputs found

    Exact Random Coding Secrecy Exponents for the Wiretap Channel

    Full text link
    We analyze the exact exponential decay rate of the expected amount of information leaked to the wiretapper in Wyner's wiretap channel setting using wiretap channel codes constructed from both i.i.d. and constant-composition random codes. Our analysis for those sampled from i.i.d. random coding ensemble shows that the previously-known achievable secrecy exponent using this ensemble is indeed the exact exponent for an average code in the ensemble. Furthermore, our analysis on wiretap channel codes constructed from the ensemble of constant-composition random codes leads to an exponent which, in addition to being the exact exponent for an average code, is larger than the achievable secrecy exponent that has been established so far in the literature for this ensemble (which in turn was known to be smaller than that achievable by wiretap channel codes sampled from i.i.d. random coding ensemble). We show examples where the exact secrecy exponent for the wiretap channel codes constructed from random constant-composition codes is larger than that of those constructed from i.i.d. random codes and examples where the exact secrecy exponent for the wiretap channel codes constructed from i.i.d. random codes is larger than that of those constructed from constant-composition random codes. We, hence, conclude that, unlike the error correction problem, there is no general ordering between the two random coding ensembles in terms of their secrecy exponent.Comment: 23 pages, 5 figures, submitted to IEEE Transactions on Information Theor

    Coding Schemes for Achieving Strong Secrecy at Negligible Cost

    Full text link
    We study the problem of achieving strong secrecy over wiretap channels at negligible cost, in the sense of maintaining the overall communication rate of the same channel without secrecy constraints. Specifically, we propose and analyze two source-channel coding architectures, in which secrecy is achieved by multiplexing public and confidential messages. In both cases, our main contribution is to show that secrecy can be achieved without compromising communication rate and by requiring only randomness of asymptotically vanishing rate. Our first source-channel coding architecture relies on a modified wiretap channel code, in which randomization is performed using the output of a source code. In contrast, our second architecture relies on a standard wiretap code combined with a modified source code termed uniform compression code, in which a small shared secret seed is used to enhance the uniformity of the source code output. We carry out a detailed analysis of uniform compression codes and characterize the optimal size of the shared seed.Comment: 15 pages, two-column, 5 figures, accepted to IEEE Transactions on Information Theor
    • …
    corecore