118 research outputs found

    DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving

    Full text link
    Today, there are two major paradigms for vision-based autonomous driving systems: mediated perception approaches that parse an entire scene to make a driving decision, and behavior reflex approaches that directly map an input image to a driving action by a regressor. In this paper, we propose a third paradigm: a direct perception approach to estimate the affordance for driving. We propose to map an input image to a small number of key perception indicators that directly relate to the affordance of a road/traffic state for driving. Our representation provides a set of compact yet complete descriptions of the scene to enable a simple controller to drive autonomously. Falling in between the two extremes of mediated perception and behavior reflex, we argue that our direct perception representation provides the right level of abstraction. To demonstrate this, we train a deep Convolutional Neural Network using recording from 12 hours of human driving in a video game and show that our model can work well to drive a car in a very diverse set of virtual environments. We also train a model for car distance estimation on the KITTI dataset. Results show that our direct perception approach can generalize well to real driving images. Source code and data are available on our project website

    Virtual to Real Reinforcement Learning for Autonomous Driving

    Full text link
    Reinforcement learning is considered as a promising direction for driving policy learning. However, training autonomous driving vehicle with reinforcement learning in real environment involves non-affordable trial-and-error. It is more desirable to first train in a virtual environment and then transfer to the real environment. In this paper, we propose a novel realistic translation network to make model trained in virtual environment be workable in real world. The proposed network can convert non-realistic virtual image input into a realistic one with similar scene structure. Given realistic frames as input, driving policy trained by reinforcement learning can nicely adapt to real world driving. Experiments show that our proposed virtual to real (VR) reinforcement learning (RL) works pretty well. To our knowledge, this is the first successful case of driving policy trained by reinforcement learning that can adapt to real world driving data

    Evolving a rule system controller for automatic driving in a car racing competition

    Get PDF
    IEEE Symposium on Computational Intelligence and Games. Perth, Australia, 15-18 December 2008.The techniques and the technologies supporting Automatic Vehicle Guidance are important issues. Automobile manufacturers view automatic driving as a very interesting product with motivating key features which allow improvement of the car safety, reduction in emission or fuel consumption or optimization of driver comfort during long journeys. Car racing is an active research field where new advances in aerodynamics, consumption and engine power are critical each season. Our proposal is to research how evolutionary computation techniques can help in this field. For this work we have designed an automatic controller that learns rules with a genetic algorithm. This paper is a report of the results obtained by this controller during the car racing competition held in Hong Kong during the IEEE World Congress on Computational Intelligence (WCCI 2008).Publicad

    Driving Cars by Means of Genetic Algorithms

    Get PDF
    Proceedings of: 10th International Conference on Parallel Problem Solving From Nature, PPSN 2008. Dortmund, Germany, September 13-17, 2008The techniques and the technologies supporting Automatic Vehicle Guidance are an important issue. Automobile manufacturers view automatic driving as a very interesting product with motivating key features which allow improvement of the safety of the car, reducing emission or fuel consumption or optimizing driver comfort during long journeys. Car racing is an active research field where new advances in aerodynamics, consumption and engine power are critical each season. Our proposal is to research how evolutionary computation techniques can help in this field. As a first goal we want to automatically learn to drive, by means of genetic algorithms, optimizing lap times while driving through three different circuits.Publicad
    • …
    corecore