6 research outputs found

    Network Structure and Dynamics, and Emergence of Robustness by Stabilizing Selection in an Artificial Genome

    Full text link
    Genetic regulation is a key component in development, but a clear understanding of the structure and dynamics of genetic networks is not yet at hand. In this work we investigate these properties within an artificial genome model originally introduced by Reil. We analyze statistical properties of randomly generated genomes both on the sequence- and network level, and show that this model correctly predicts the frequency of genes in genomes as found in experimental data. Using an evolutionary algorithm based on stabilizing selection for a phenotype, we show that robustness against single base mutations, as well as against random changes in initial network states that mimic stochastic fluctuations in environmental conditions, can emerge in parallel. Evolved genomes exhibit characteristic patterns on both sequence and network level.Comment: 7 pages, 7 figures. Submitted to the "8th German Workshop on Artificial Life (GWAL 8)

    An artificial development model for cell pattern generation

    Get PDF
    La formation de structures cellulaires a un rôle crucial dans le développement tant artificiel que naturel. Cette thèse présente un modèle de développement artificiel pour la génération de structures cellulaires basé sur le paradigme des automates cellulaires (AC). La croissance cellulaire est contrôlée par un génome comportant un réseau de régulation artificiel (RRA) et une série de gènes structurels. Ce génome a subi une évolution par algorithme génétique (AG) afin de produire des structures cellulaires en 2D grâce à l'activation et inhibition sélective des gènes. De plus des gradients morphogénétiques ont été utilisés pour fournir aux cellules une information de position permettant de contraindre leur reproduction. Après évolution d'un génome par algorithme génétique, une cellule unique est placée au milieu de la grille de l’AC où sa reproduction, contrôlée par le RRA, produit une structure cellulaire cible. Le modèle a été appliqué avec succès au problème classique de génération de la structure d’un drapeau français (French flag problem).Cell pattern formation has a crucial role in both artificial and natural development. This thesis presents an artificial development model for cell pattern generation based on the cellular automata (CA) paradigm. Cellular growth is controlled by a genome consisting of an artificial regulatory network (ARN) and a series of structural genes. The genome was evolved by a genetic algorithm (GA) in order to produce 2D cell patterns through the selective activation and inhibition of genes. Morphogenetic gradients were used to provide cells with positional information that constrained cellular replication. After a genome was evolved, a single cell in the middle of the CA lattice was allowed to reproduce controlled by the ARN until a cell pattern was formed. The model was applied to the canonical problem of growing a French flag pattern.

    Topology and dynamics of an artificial genetic regulatory network model

    Get PDF
    This thesis presents some of the methods of studying models of regulatory networks using mathematical and computational formalisms. A basic review of the biology behind gene regulation is introduced along with the formalisms used for modelling networks of such regulatory interactions. Topological measures of large-scale complex networks are discussed and then applied to a specific artificial regulatory network model created through a duplication and divergence mechanism. Such networks share topological features with natural transcriptional regulatory networks. Thus, it may be the case that the topologies inherent in natural networks may be primarily due to their method of creation rather than being exclusively shaped by subsequent evolution under selection. The evolvability of the dynamics of these networks are also examined by evolving networks in simulation to obtain three simple types of output dynamics. The networks obtained from this process show a wide variety of topologies and numbers of genes indicating that it is relatively easy to evolve these classes of dynamics in this model

    A gene regulatory network model for control

    Get PDF
    The activity of a biological cell is regulated by interactions between genes and proteins. In artificial intelligence, this has led to the creation of developmental gene regulatory network (GRN) models which aim to exploit these mechanisms to algorithmically build complex designs. The emerging field of GRNs for control aims to instead exploit these natural mechanisms and this ability to encode a large variety of behaviours within a single evolvable genetic program for the solution of control problems. This work aims to extend the application domain of GRN models to previously unsolved control problems; the focus will here be on reinforcement learning problems, in which the dynamics of the system controlled are kept from the controller and only sparse feedback is given to it. This category of problems closely matches the challenges faced by natural evolution in generating biological GRNs. Starting with an existing GRN model, the fractal GRN (FGRN) model, a successful application to a standard control problem will be presented, followed by multiple improvements to the FGRN model and its associated genetic algorithm, resulting in better performances in terms of both reliability and speed. Limitations will be identified in the FGRN model, leading to the introduction of the Input-Merge- Regulate-Output (IMRO) architecture for GRN models, an implementation of which will show both quantitative and qualitative improvements over the FGRN model, solving harder control problems. The resulting model also displays useful features which should facilitate further extension and real-world use of the system

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore