
A Gene Regulatory Network Model for
Control

Jean-Baptiste Krohn

University College London

Dept. of Computer Science

Gower Street

London WC1E 6BT
United Kingdom

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University College London (UCL).

Department of Computer Science

University College London

Abstract

The activity of a biological cell is regulated by interactions between genes and proteins. In artificial

intelligence, this has led to the creation of developmental gene regulatory network (GRN) models which

aim to exploit these mechanisms to algorithmically build complex designs. The emerging field of GRNs

for control aims to instead exploit these natural mechanisms and this ability to encode a large variety of

behaviours within a single evolvable genetic program for the solution of control problems.

This work aims to extend the application domain of GRN models to previously unsolved control

problems; the focus will here be on reinforcement learning problems, in which the dynamics of the

system controlled are kept from the controller and only sparse feedback is given to it. This category

of problems closely matches the challenges faced by natural evolution in generating biological GRNs.

Starting with an existing GRN model, the fractal GRN (FGRN) model, a successful application to a

standard control problem will be presented, followed by multiple improvements to the FGRN model

and its associated genetic algorithm, resulting in better performances in terms of both reliability and

speed. Limitations will be identified in the FGRN model, leading to the introduction of the Input-Merge-

Regulate-Output (IMRO) architecture for GRN models, an implementation of which will show both

quantitative and qualitative improvements over the FGRN model, solving harder control problems. The

resulting model also displays useful features which should facilitate further extension and real-world use

of the system.

I, Jean-Baptiste Krohn confirm that the work presented in this thesis is my own. Where information has

been derived from other sources, I confirm that this has been indicated in the thesis.

To my father and mother

Acknowledgements

Many have helped in the realisation of this work, but I am particularly grateful to the following people

for their contribution to the completion of this thesis.

Denise Gorse supervised my work and through our frequent discussions managed the impressive

feat of directing my thoughts and energies into properly structured academic research, which she then

taught me to put down into readable prose. Chris Clack’s concise and accurate comments and feedback

throughout the PhD were most enlightening and proved invaluable towards finalising it.

I am grateful to Peter Bentley for his supervision of my initial work and introducing me to fractal

gene regulatory networks. I would also like to thank Mark Herbster for his patience and advice. My

viva examiners, Miguel Nicolau and David Clark, provided through their challenging, well thought-out,

questions and researched criticism a memorable, and ultimately deeply satisfying, experience. I enjoyed

comradeship in research at UCL with Ghada Hassan and Domenico Cozzetto.

I am grateful to Lee for his friendship, support, and sensible advice throughout this whole adventure.

Among the friends who have encouraged me during this process, I must also single out Annora Eyt-

Dessus and Dan Bratton for their continued and unwavering support, Henry Potts for his wise advise,

and particularly Maria-Angelica Bălă for her support and the light and gaiety she brings to tough times.

Foremost I thank my mother and father for always encouraging me to learn and better myself.

Contents

1 Introduction 16

1.1 Research problem . 17

1.2 Contributions . 18

1.3 Thesis outline . 18

1.4 Publications . 19

2 Literature Review 20

2.1 Reinforcement learning control . 20

2.1.1 Genetic reinforcement learning . 20

2.1.2 The pole balancing problem . 21

2.1.3 The acrobot swing-up problem . 24

2.1.4 The mountain car problem . 30

2.2 Natural gene regulatory networks (GRNs) . 31

2.2.1 Regulation . 31

2.2.2 Network structure . 32

2.2.3 Network motifs . 32

2.2.4 Self organisation . 32

2.3 Gene regulatory network (GRN) models . 32

2.3.1 Random boolean networks (RBNs) . 33

2.3.2 Neural network based GRN models . 34

2.3.3 Developmental GRN models . 34

2.3.4 GRN models for control . 35

2.3.5 Artificial regulatory networks (ARNs) . 35

2.3.6 The fractal GRN (FGRN) model . 36

3 Fractal Gene Regulatory Networks (FGRNs) for Development 37

3.1 System description . 38

3.1.1 FGRN genome . 38

3.1.2 The FGRN genetic algorithm (FGA). 41

3.1.3 Fractal proteins . 42

3.1.4 Protein chemistry . 44

Contents 7

3.1.5 FGRN dynamics . 47

3.2 Preliminary experiments . 49

3.3 Experiments . 51

3.3.1 FGRN evolvability: π as a phenotype . 51

3.3.2 Experimental setup . 51

3.3.3 Results . 52

3.4 Discussion . 55

4 FGRNs for Control 58

4.1 Initial system adaptations for control . 59

4.2 Experiments: pole balancing . 62

4.2.1 Experimental settings . 64

4.2.2 Results . 64

4.3 Improving reliability with ALPS . 69

4.3.1 ALPS description . 69

4.3.2 Experiments . 71

4.4 Introducing negative input protein concentrations . 76

4.4.1 Experiments . 76

4.5 Behavioural concentration activation check . 83

4.6 Performance comparison with a neuroevolution model 88

4.7 Discussion . 93

5 Investigating Protein Encoding 94

5.1 Critique of fractal protein encoding . 96

5.2 Mondrian protein encoding . 97

5.3 Landscape protein encoding . 99

5.4 Experiments . 101

5.5 Protein statistical analysis . 102

5.5.1 Fractal proteins . 102

5.5.2 Landscape proteins . 104

5.5.3 Mondrian proteins . 105

5.6 Discussion . 109

6 The Input-Merge-Regulate-Output (IMRO) Architecture 110

6.1 Architecture description . 111

6.1.1 Structure . 111

6.1.2 Control loop algorithm . 112

6.2 Proteins and cell state merging . 114

6.3 Gene components . 115

6.3.1 Promoter . 115

8 Contents

6.3.2 Gene activation . 115

6.3.3 Protein output . 116

6.3.4 Scalar output . 116

6.4 Experiments . 117

6.4.1 Results . 119

6.5 Discussion . 123

7 IMRO Applicability 125

7.1 Generative encoding and memory . 127

7.2 Real-valued outputs . 135

7.3 Generalisation . 138

7.4 The mountain car problem . 144

7.5 Conclusion . 147

8 Conclusion 149

8.1 Findings of this work . 151

8.2 Future work . 152

Appendices 154

A Algorithms details 155

A.1 Fgrn GA . 155

Bibliography 155

List of Figures

2.1 Interactions between controller and controlled system 21

2.2 Pole balancing: the cart-pole-track system . 21

2.3 Single and double pole balancing problems . 22

2.4 Inspiration for the acrobot problem . 24

2.5 Acrobot swing-up problem . 26

2.6 Mountain car problem . 30

2.7 Random boolean network (RBN) activation patterns . 33

3.1 FGRN gene composition . 38

3.2 Example FGRN genome . 39

3.3 FGRN gene type roles . 40

3.4 Fractal protein and associated concentration bitmap . 43

3.5 Pre-evolved fractal proteins. 43

3.6 FGRN gene detail . 44

3.7 Fractal protein chemistry . 45

3.8 Short target activation patterns . 49

3.9 Long target activation pattern . 49

3.10 FGRN π overall precision results . 53

3.11 Example π approximation detailled . 54

3.12 Behavioural gene output for π approximation . 54

3.13 Protein concentrations in a running FGRN system . 55

3.14 FGRN cytoplasm and associated concentration at each developmental iteration 56

3.15 Approximations of π at each developmental iteration of the running system 57

4.1 Workings of an FGRN controller . 59

4.2 Internal view of an FGRN controller . 60

4.3 Variations of the pole balancing system studied . 62

4.4 FGRN model with FGA on single pole balancing with 1.0m pole 65

4.5 FGRN model with FGA on single pole balancing with 1.0m pole and no velocity inputs . 65

4.6 FGRN model with FGA on single pole balancing with 0.5m pole 66

4.7 FGRN model with FGA on single pole balancing with 0.5m pole and no velocity inputs . 66

10 List of Figures

4.8 FGRN model with FGA on single pole balancing with 2.0m pole 67

4.9 FGRN model with FGA on single pole balancing with 2.0m pole and no velocity inputs . 67

4.10 FGRN model with FGA on double pole balancing . 68

4.11 FGRN model with FGA on double pole balancing without velocity inputs. 68

4.12 FGRN with ALPS on single pole balancing with 1.0m pole 72

4.13 FGRN with ALPS on single pole balancing with 1.0m pole and no velocity inputs 72

4.14 FGRN with ALPS on single pole balancing with 0.5m pole 73

4.15 FGRN with ALPS on single pole balancing with 0.5m pole and no velocity inputs 73

4.16 FGRN with ALPS on single pole balancing with 2.0m pole 74

4.17 FGRN with ALPS on single pole balancing with 2.0m pole and no velocity inputs 74

4.18 FGRN with ALPS on double pole balancing . 75

4.19 FGRN with ALPS on double pole balancing without velocity inputs 75

4.20 FGRN with negative concentrations on SPB with 1.0m pole 79

4.21 FGRN with negative concentrations on SPB with 1.0m pole and no velocity inputs . . . 79

4.22 FGRN with negative concentrations on SPB with 0.5m pole 80

4.23 FGRN with negative concentrations on SPB with 0.5m pole and no velocity inputs . . . 80

4.24 FGRN with negative concentrations SPB with 2.0m pole 81

4.25 FGRN with negative concentrations on SPB with 2.0m pole and no velocity inputs . . . 81

4.26 FGRN with negative concentrations on DPB . 82

4.27 FGRN with negative concentrations on DPB without velocity inputs 82

4.28 FGRN with behavioural CT check on SPB with 1.0m pole 84

4.29 FGRN with behavioural CT check on SPB with 1.0m pole and no velocity inputs 84

4.30 FGRN with behavioural CT check on SPB with 0.5m pole 85

4.31 FGRN with behavioural CT check on SPB with 0.5m pole and no velocity inputs 85

4.32 FGRN with behavioural CT check on SPB with 2.0m pole 86

4.33 FGRN with behavioural CT check on SPB with 2.0m pole and no velocity inputs 86

4.34 FGRN with behavioural CT check on DPB . 87

4.35 FGRN with behavioural CT check on DPB without velocity inputs 87

4.36 RNN on single pole balancing with 1.0m pole . 89

4.37 RNN on single pole balancing with 1.0m pole and no velocity inputs 89

4.38 RNN on single pole balancing with 0.5m pole . 90

4.39 RNN on single pole balancing with 0.5m pole and no velocity inputs 90

4.40 RNN on single pole balancing with 2.0m pole . 91

4.41 RNN on single pole balancing with 2.0m pole and no velocity inputs 91

4.42 RNN on double pole balancing . 92

4.43 RNN on double pole balancing without velocity input 92

5.1 Fractal protein encoding . 95

5.2 Pre-evolved fractal proteins . 96

List of Figures 11

5.3 Piet Mondrian’s Composition II in Red, Blue, and Yellow 97

5.4 Example Mondrian protein . 97

5.5 Mondrian protein encoding . 98

5.6 Landscape protein encoding . 100

5.7 Landscape protein examples . 100

5.8 Visual statistics of randomly generated fractal proteins 103

5.9 Visual statistics of randomly generated landscape proteins 104

5.10 Visual statistics of randomly generated one portion Mondrian proteins (Mondrian-1) . . 106

5.11 Visual statistics of randomly generated two portions Mondrian proteins (Mondrian-2) . . 107

5.12 Visual statistics of randomly generated four portions Mondrian proteins (Mondrian-4) . . 108

5.13 Example bitmaps from the three protein encoding methods 109

6.1 FGRN and IMRO controller structures . 111

6.2 IMRO architecture for GRN control . 112

6.3 IMRO genes composition . 112

6.4 Merging of two proteins in the IMRO model . 114

6.5 Test activation patterns . 118

6.6 IMRO system learning on the single pole balancing problem (SPB) 120

6.7 FGRN system learning on the single pole balancing problem (SPB) 120

6.8 IMRO system learning on the double pole balancing problem (DPB) 121

6.9 IMRO system learning on the acrobot problem . 122

6.10 FGRN system learning on the acrobot problem . 122

6.11 Example acrobot swing-up trajectory . 123

7.1 IMRO(Landscape) learning on the single pole balancing problem (SPB) 130

7.2 IMRO learning on the single pole balancing problem (SPB) 130

7.3 IMRO(Landscape) learning on the double pole balancing problem (DPB) 131

7.4 IMRO system learning on the double pole balancing problem (DPB) 131

7.5 IMRO(Landscape) system learning on SPB without velocity inputs (SPB(NV)) 132

7.6 IMRO system learning on SPB without velocity inputs (SPB(NV)) 132

7.7 IMRO(Landscape) system learning on DPB without velocity inputs (DPB(NV)) 133

7.8 IMRO system learning on DPB without velocity inputs (DPB(NV)) 133

7.9 IMRO(Landscape) learning on the acrobot . 134

7.10 IMRO system learning on the acrobot problem . 134

7.11 IMRO learning on SPB with real control outputs . 136

7.12 IMRO learning on SPB(NV) with real control outputs 136

7.13 IMRO learning on DPB with real control outputs . 137

7.14 IMRO learning on DPB(NV) with real control outputs 137

7.15 IMRO learning on SPB with bang-bang control and random initialisation 140

12 List of Figures

7.16 IMRO learning on SPB with real control outputs and random initialisation 140

7.17 IMRO learning on SPB(NV) with bang-bang control and random initialisation 141

7.18 IMRO learning on SPB(NV) with real control and random initialisation 141

7.19 Mountain car problem . 144

7.20 IMRO system mountain car run results . 145

7.21 Map of success percentage per generalisation position/velocity pair 146

7.22 Map of mean trajectory length per generalisation position/velocity pair 147

List of Tables

2.1 Variables associated with the pole balancing equations of motion 23

2.2 Constants associated with the pole balancing equations of motion 23

2.3 Pole balancing results for previous solutions . 25

2.4 Descriptions and values of the constant parameters in the acrobot problem 27

3.1 Initialisation and mutation ranges for the FGRN gene fields 40

3.2 Constants associated with the FGA and their usual values 42

3.3 Median and fittest π approximations obtained for each experiment 52

4.1 Controller inputs for single pole balancing with full-state inputs 63

4.2 Controller inputs for single pole balancing without velocity inputs 63

4.3 Controller inputs for double pole balancing with full-state inputs 63

4.4 Controller inputs for double pole balancing without velocity inputs 63

4.5 Results for the FGRN model on pole balancing, with FGA search. 64

4.6 Results for the FGRN model on pole balancing, with ALPS GA search. 71

4.7 FGRN negative input concentration settings . 76

4.8 FGRN with negative concentrations and ALPS on pole balancing results 76

4.9 FGRN with doubled input range and ALPS on pole balancing results 78

4.10 FGRN with behavioural concentration check on pole balancing results 83

4.11 RNN on pole balancing results . 88

5.1 Initialisation and mutation ranges for the parameters of a Mondrian protein definition . . 98

5.2 Initialisation and mutation ranges for the parameters of a landscape protein definition . . 99

5.3 FGRN with protein encodings on pole balancing and pattern generation results 101

6.1 IMRO and FGRN pattern experiment results . 119

6.2 IMRO and FGRN pole balancing results . 119

6.3 Acrobot results . 121

7.1 IMRO(Landscape) pattern generation results . 128

7.2 IMRO(Landscape) pole balancing results . 128

7.3 IMRO(Landscape) acrobot results . 129

7.4 IMRO pole balancing results for bang-bang and real outputs 135

14 List of Tables

7.5 IMRO pole balancing with random initial states results 142

7.6 IMRO generalisation scores after additional evolutionary pressure 143

7.7 IMRO mountain car generalisation results . 145

List of Algorithms

3.1 FGRN GA (FGA) main loop. 41

3.2 FGRN development main loop . 48

4.1 FGRN control loop . 61

4.2 ALPS algorithm . 70

6.1 IMRO control loop . 113

A.1 FGA: generating the initial random population . 155

A.2 FGA: picking one of the two parent genomes needed to generate a child genome 155

A.3 FGA: ageing all genomes in the population and removing the expired ones 156

Chapter 1

Introduction

Biology has often inspired the design of machine learning systems; from artificial neural networks to

evolutionary computing, biological metaphors have provided a useful basis. Similarly, this work looks

at gene regulatory networks (GRNs) as inspiration for control. GRNs are composed of the set of interac-

tions between genes and proteins within a biological cell, and act as controllers in situations as different

as single cell bacteria and multiple-cell organisms, with orders of magnitude of variation in complexity

and size. GRNs are a product of evolution, optimised for controlling their host cell in a myriad ways,

depending on context (single-cell vs. multi-cell organism, during development, etc).

This versatility of natural GRNs lead to the initial introduction of artificial GRN (AGRN) models

for the purpose of solving a different problem, that of development. In an AGRN-based developmental

system, genomes are evolved via a genetic algorithm (GA). The fitness of a genome is determined in-

directly, the genome being iteratively ‘executed’ as a GRN, and the output of the GRN being the final

product on which the fitness is evaluated. However, though these developmental uses are valid applica-

tions of the GRN metaphor, at the cellular level natural GRNs act as the cell’s controller. Comparatively

little work has been based on using an AGRN for direct control. Direct control means here feeding the

control inputs in the AGRN and using the AGRN’s outputs as control actions, as opposed to indirect con-

trol which consists in using the AGRN to developmentally generate a controller (e.g. a neural network).

For direct control, AGRN genomes are evolved to maximise some measure of success in controlling a

given system.

Work using AGRN models as direct controllers includes the BioSys AGRN model from Quick et

al., which was applied to two basic control problems: dampening the variations of temperature in a

thermostat-like system, and generating light-following behaviour in a wheeled robot [QNDR03]. More

recently, Nicolau et al. modified Banzhaf’s artificial regulatory network (ARN) model to apply it to

the classic pole balancing problem [NSB10]; and Joachimczak and Wróbel applied a GRN model they

initially introduced for developing three-dimensional morphologies to the control of foraging agents in

a virtual world [JW10].

Fractal GRN (FGRN), an AGRN model revolving around the idea of using square portions of the

Mandelbrot fractal as proteins to mimic the complexity of natural protein interactions, was introduced

by Bentley [Ben04b]. The model was first applied to simple developmental tasks, such as binary pattern

1.1. Research problem 17

generation [Ben04b], function approximation [Ben05]; and to the control task of generating collision-

avoiding, wall following behaviours in a toy robot[Ben03a]. Zahadat et al. applied the FGRN model to a

grid-world, box-pushing, control problem [ZK08], and to the distributed locomotion control of modular

robots [ZCS+10]. The variety of control problems the FGRN model has been applied to makes it the

most promising candidate for improving direct AGRN-based control.

This work focuses on reinforcement learning (RL) control problems, in which the controlled sys-

tem’s dynamics are completely unknown and the reinforcement feedback is limited. Keeping the dy-

namics unknown to the controller is important for real world applications (e.g. coal furnace combus-

tion control [FSS+11]), and minimising domain knowledge helps ensures the wide applicability of the

method.

Evaluating a controller’s performance on a RL problem consists of running a loop in which the

controller is given inputs from the controlled system (e.g. the state of the system), and must return an

output vector that specifies actions to be taken; the controller may then receive a scalar reinforcement

signal from the controlled system (a higher value corresponding to a higher reward). The evaluation ends

when a failure condition is reached, or when a given time period has expired. A successful controller

must maximise the sum of reinforcements over the course of its evaluation. When evolving AGRN

controllers for RL, the sum of reinforcements received by a controller in an evaluation is the fitness of the

genome which produced the controller. The AGRN controller itself does not receive the reinforcement

signal.

1.1 Research problem

It is the hypothesis of this work that improvements in the FGRN model will allow the solving of RL

problems currently unsolvable by the FGRN, and unsolved by any other AGRN-based method. And that

these improvements will also provide an increase in performance by decreasing the number of controller

evaluations required by the FGRN model to find a successful solution on a range of RL problems.

This work is believed to be significant, as it will advance the field of AGRN-based control, partly

closing the gap of applicability between AGRNs and traditional control techniques. The interest in

AGRN has been increasing in the last decade; more specifically the number of publications on direct

control using AGRN has increased in recent years, mostly as pre-existing GRN models for develop-

ment are modified to be applied to control problems. An example of this interest is the creation at the

Eleventh European Conference on Artificial Life (ECAL 2011) of a Workshop on the Design, Simula-

tion, Construction and Testing of Synthetic Gene Regulatory Networks for Computation, Control and

Communication (SynBioCCC).

This work is believed to be difficult. The FGRN model is complex, and contains poorly documented

arbitrary constants. Randomly generated fractal proteins tend to be of limited use and for better results

Bentley recommends initialising the proteins in the genome by drawing from a pre-evolved, limited

set of proteins [Ben04b]. These issues, added to the opacity of the resulting controllers, are likely to

18 Chapter 1. Introduction

limit the applicability of the model, and make it harder to understand and modify in a targeted manner.

Compared to some other AGRN models, the FGRN model is also computationally inefficient, making

experimentation slower.

This work is believed to be achievable. As detailed above, the FGRN has a number of issues

and fixing these issues is likely to lead not only to quantitative improvements in reducing the number

of controller evaluations required to find a successful solutions on a range of problems, but also to

qualitative improvements allowing the system to solve problems which previously could not be solved

with it.

1.2 Contributions
The contributions in this work will be:

• Advanced demonstrations of the evolvability of the FGRN model on a developmental problem, as

a basis for the subsequent work on control problems.

• First application of the FGRN model to a standard RL control problem: pole-balancing.

• Introduction of improved, simplified, non-fractal chemistries for the FGRN model, leading to a

decrease in the number of controller evaluations required to reach a successful solution on the

pole-balancing problem.

• Further simplifications of the FGRN model, leading to the introduction of a fast, modular GRN

model able to solve control problems previously unsolvable with the FGRN model, and unsolved

by any other evolutionary method.

1.3 Thesis outline
This thesis is structured as follows. Chapter 2 provides background on the control problems studied,

natural GRNs, and artificial GRN models. In Chapter 3 the FGRN model for development is described

in detail, and results on a developmental problem are presented, illustrating the ability of the FGRN

model combined with a genetic algorithm to refine genomes to produce target activations pattern with

arbitrary criteria. Chapter 4 describes the alterations to the FGRN model required to its application to

control problems, before showing the results of its application to multiple versions of the pole balancing

problem; improvements to the speed and reliability with which a successful controller is found are then

presented. The subject of Chapter 5 is an investigation into protein encoding in the FGRN model:

the important characteristics and limitations of the fractal process of generating proteins (the fractal

protein encoding) are identified, and alternative encodings mitigating these limitations are presented

and found to improve performance on the pole balancing control problem. In Chapter 6, based on the

findings of Chapter 5, a simpler, faster, modular GRN architecture and model are presented and found

to successfully generate controllers for the double pole balancing problem, which was not solvable with

the FGRN model, and a hardened version of the acrobot problem, for which no evolutionary solution

existed previously. In Chapter 7, the IMRO system introduced in Chapter 6 is combined with the best

1.4. Publications 19

performing protein encoding designed in Chapter 5, and the IMRO system’s applicability is validated

on variations of problems studied in previous chapters, and on an additional control problem. Chapter 8

concludes this thesis, summarising its findings and lists several avenues of future work.

1.4 Publications
This thesis incorporates material from the following publications:

• J. Krohn, P.J. Bentley, and H. Shayani. The Challenge of Irrationality: Fractal Protein Recipes

for PI. In Proceedings of the 11th Annual conference on Genetic and Evolutionary Computa-

tion (GECCO 2009) pages 715–722, ACM, 2009.

• J. Krohn and D. Gorse. Fractal Gene Regulatory Networks for Control of Nonlinear Systems. In

Parallel Problem Solving From Nature (PPSN XI), volume 6239 of Lecture Notes in Computer

Science (LNCS), pages 209–218, Springer, 2010.

• J. Krohn and D. Gorse. Extracting Key Gene Regulatory Dynamics for the Direct Control of

Mechanical Systems. In Parallel Problem Solving From Nature (PPSN XII), volume 7491 of

Lecture Notes in Computer Science (LNCS), pages 468–477, Springer, 2010.

Chapter 2

Literature Review

In this chapter, the application domain, reinforcement learning control is first described. The basics

of natural gene regulatory networks (GRNs) are then covered, followed by a review of the existing

evolutionary GRN models which they inspired, with a focus on GRN models for control.

2.1 Reinforcement learning control
Reinforcement Learning (RL) control consists of discovering what actions to take for any given envi-

ronmental state in order to maximise a scalar reward [SB98]. Solving reinforcement learning problems

generally requires a balance between exploration (attempting new actions leading to yet unknown conse-

quences) and exploitation of existing knowledge to maximise reinforcement. Examples of reinforcement

problems, the pole balancing, acrobot, and mountain car tasks are detailed in the following sections of

this chapter. The difficulty of reinforcement learning stems from the limited information given to the

controller about the system controlled, and the limited learning feedback received by the controller. The

dynamics of the controlled system are kept completely hidden, the only information on the problem

given to the controller being often limited to the number and range of inputs and outputs. As opposed

to supervised learning approaches, no direct feedback is given to the controller as to any of its actions

being good or bad. The feedback given, or reinforcement, is a function of the situation of the system

controlled, and not the controller’s latest action, and can be very sparse (as is the case for the problems

studied in this work). The constraints not only make the problems more difficult, but also ensure a

wide applicability of the learning controllers, which cannot rely on specific knowledge of the problem.

Figure 2.1 illustrates these interactions between the controller and the controlled system.

2.1.1 Genetic reinforcement learning

As opposed to traditional RL approaches, which explicitly learn a value surface (a mapping attributing

a desirability value for each combination of a system state x and output y), genetic reinforcement learn-

ing (a term introduced by Whitley et al. [WDDA93]) uses metaheuristics, typically and in this work

genetic algorithms (GAs), to produce candidate controllers which are each tested in turn. The fitness of

a candidate controller is then the sum of reinforcements over the time of its evaluation. The exploration

role is fulfilled by the initial generation of random controllers, and the subsequent variation (mutation

and crossover) in the population, while the selective nature of GAs ensure the prevalence of controllers

2.1. Reinforcement learning control 21

Figure 2.1: The interactions between controller and controlled system. The controller is given as input

the state vector x of the system and outputs an action vector y; it also receives at each control iteration a

reinforcement scalar r which is function of x.

which maximise the sum of reinforcements.

2.1.2 The pole balancing problem

Pole balancing is a well-known and well-studied control problem that has been used as a benchmark

for the design and test of many controllers [Ige03]. It has previously been used as a means to eval-

uate and develop control systems before applying them to real-world control tasks (e.g. Gomez and

Miikkulainen’s neuroevolution system for fin-less rocket guidance [GM03]). The system controlled is

composed of a free-swinging pole attached on top of a cart, which can itself move left or right on a track

(see Figure 2.2). The aim is to stop the pole from falling down only by giving the cart a small push

left or right at each timestep, while keeping the cart within the boundaries of the track, for half an hour.

The input of the controller at each time step is the state of the system, and the output is a boolean value

determining whether the cart is pushed left or right by a fixed force (‘bang-bang’ control). The state

of the system < x, θ, ẋ, θ̇ > is composed of the angle of the pole to the vertical ‘θ’, of the distance of

the centre of the cart to the centre of the track ‘x’, and of their reciprocal velocities. The reinforcement

provided to the controller is +1 for each timestep until failure, which happens if the angle of the pole

to the vertical is too high, or the cart goes outside the boundaries of the track. Multiple harder variants

of the problem exist; the most popular among them is the double pole balancing problem which adds a

second smaller pole to be balanced on the cart.

Figure 2.2: Pole balancing: the cart-pole-track system

22 Chapter 2. Literature Review

(a) Single pole balancing (b) Double pole balancing

Figure 2.3: The single and double pole balancing problems. While the poles are balanced within the

greyed out areas, a fixed positive reinforcement is given. The pole sizes and accepted angle ranges are

to scale.

Formal problem description

The variations of the pole balancing considered in this work will be the traditional version, here titled

single pole balancing (SPB); and the commonly used double pole balancing (DPB). Both problems are

illustrated in Figure 2.3. Single pole balancing is usually (and here) defined to be the problem of keeping

the angular position θ of the 1.0m hinged pole within 12◦ of vertical, and the distance h of the cart

on which it is mounted within 2.4m of the centre of the track, using only ‘bang-bang’ control (a force

F of ±10N is applied to the cart at each time step). There are fifty control timesteps per second, and

the fitness of a controller is the number of timesteps for which the pole was balanced before failure.

The controller is considered to be successful after balancing the pole for at least a hundred thousand

timesteps (equivalent to approximately thirty minutes). The double pole balancing problem is similar,

differing in the addition of an independently swinging 0.1m pole on the cart, that must also be balanced.

It is generally thought to be considerably more difficult. To not allow the poles to move in concert,

thereby simplifying the problem of controlling them, the longer pole’s starting position is at an angle of

4◦, with null velocity. The maximum acceptable angle of the pole from the vertical is brought from 12◦

to 36◦, to make the problem solvable.

The equations of motion and constant values used here are adapted from Gomez et al [GSM08],

these represent the most commonly used version of the problem and describe both the single and double

pole systems. The equations of motion for N poles balanced on a single cart are

ḧ =
F − µcsgn(ḣ) +

∑N
i=1 F̃i

M +
∑N
i=1 m̃i

θ̈i = − 3

4li

(
ḧ cos θi + g sin θi +

µpiθ̇i
mili

)

2.1. Reinforcement learning control 23

Table 2.1: Variables associated with the pole balancing equations of motion

Symbol Description Range

F Force applied to the cart −10,+10N

x Position of the cart on the track [−2.4, 2.4]m

θ1 Angle of the first pole from vertical SPB: [−12, 12]◦

DPB: [−36, 36]◦

θ2 Angle of the second pole from vertical DPB: [−36, 36]◦

Table 2.2: Constants associated with the pole balancing equations of motion

Symbol Description Value

g Gravity -9.8m.s−2

M Mass of the cart 1.0kg

mi Mass of the ith pole m1 = 0.1kg

m2 = 0.01kg

li Half length of the ith pole l1 = 0.5m

l2 = 0.05m

µc Coefficient of friction of the cart on the track 0.00005

µpi Coefficient of friction of the ith pole hinge 0.000002

where F̃i is the effective force from the ith pole,

F̃i = miliθ̇
2
i sin θi +

3

4
mi cos θi

(
µpiθ̇i
mili

+ g sin θi

)

and m̃i is the effective mass of the ith pole,

m̃i = mi

(
1− 3

4
cos2 θi

)
The variables of the system and the range of value they can take are detailed in Table 2.1. The

constants M , mi, li, µc, µpi are defined in Table 2.2. As in ref [GSM08], two-step fourth order Runge-

Kutta, a common method for the approximation of ordinary differential equations, is used with a 0.02s

timestep to integrate the equations of motion.

The state given as input for to the controller at each timestep is < x, θ, ẋ, θ̇ > for the single pole

balancing problem, and< x, θ1, θ2, ẋ, θ̇1, θ̇2 > for double pole balancing. Pole balancing problems have

also often be made harder by depriving the controller of any velocity information; controller inputs are

then < x, θ > (SPB), and < x, θ1, θ2 >.

Previous solutions

The original single pole problem was first solved with a value surface-based method by Barto et

al. [BSA83], with Wieland the first to evolve neural networks for the control of the system [Wie90]

24 Chapter 2. Literature Review

(for the single, jointed, and double pole versions of the problem), but with additional fitness feedback

which penalised any departure from the balanced position.

Whitley et al. presented the first evolutionary solution to the single pole balancing problem with

the fitness function used in this work (the time from start until system failure) [WDDA93]; for this

the weights of neural network controllers were evolved with a GA. Whitley et al. were also the first

to investigate, in that work, the ability to generalise of the final successful controllers, by testing them

against a vast range of initial cart and pole positions. Aiming to maximise this ability of the generated

controllers to control the system from a large range of starting positions, each control run during the

evolutionary process was started from a different, randomly generated, starting position.

Subsequent solutions were achieved using a variety of other methods such as genetic program-

ming [SF99]. More recently, neuroevolution methods of increasing sophistication have used various

versions of the pole balancing problem for validation and as a benchmark [Ige03]; in 2008, Gomez et

al. produced an extensive comparison of the performance of current methods on the single and double

pole balancing problems [GSM08]. In terms of the speed with which a successful controller is found,

neuroevolution, a genetic reinforcement learning method evolving the weights and structure of neural

network controllers, is currently the most successful approach. Gomez et al.’s table of results for the

single, full-state, pole balancing is reproduced in Table 2.3; it should be noted that there were some vari-

ation in the problem settings, some methods being allowed to apply a variable force on the cart instead

of the fixed amount in bang-bang control. Note that all experimental settings linked to the single and

double pole balancing have been taken from that work [GSM08], to allow for ease of comparison with

their results, but using only the harder bang-bang control with no possibility of variable force output.

2.1.3 The acrobot swing-up problem

The acrobot is a two-link underactuated robot; it is roughly analogous to a gymnast hanging by the hands

from a fixed bar with arms and legs straight, and only able to act by bending at the hips; it is illustrated in

Figure 2.4. The aim of the gymnast is to swing her body above the horizontal bar [Spo95], in preparation

to a handstand. The acrobot system is much simplified, with the solid links freely rotating around both

the bar and the hip joint. The controller must then, taking as input the full state of the system, decide at

each timestep what torque to apply to the hips joint.

Figure 2.4: The inspiration for the acrobot problem. A gymnast hanging from an horizontal bar, attempt-

ing to swing her body above the bar through only hips actions.

The acrobot has been extensively studied both as a control and machine learning problem. Unlike

the pole balancing problem, the acrobot problem definition varies significantly from one study to the

2.1. Reinforcement learning control 25

Table 2.3: 2008 table of average number of evaluations needed to obtain a controller able to solve the

full state single pole balancing problem for 100,000 timesteps, over 50 runs. Note that apart from the

CMA-ES [Ige03] and the AHC solutions which use bang-bang control, all other solutions listed in this

table allow controllers to specify a variable, continuous, amount of force to the cart. Reproduced from

Gomez et al. [GSM08], with the addition of the family to which each of these methods belongs.

Method Evaluations Family

CoSyNE 98 Neuroevolution

ESP 289 Neuroevolution

NEAT 743 Neuroevolution

SANE 302 Neuroevolution

CNE 352 Neuroevolution

CMA-ES 283 Evolutionary strategy

SARSA-CABA 965 Q-Learning

SARSA-CMAC 540 Q-Learning

Q-MLP 2,056 Q-Learning

PGRL 28,779 Reinforcement learning

AHC 189,500 Reinforcement learning

next. However the problem goals can be put into two broad categories:

• Swing-up consists of generating actions such that the acrobot’s tip (the gymnast’s feet) reaches a

one link height above the bar in the shortest possible amount of simulated time.

• Handstand is the harder task of swinging up the acrobot, then keeping both links vertically bal-

anced.

All solutions to the acrobot handstand problem have so far included pre-existing knowledge of the

problem, e.g. the equations of motion, the desired energy level of the goal position, or the coordinates

of the target position. Solutions to the swing-up problem have frequently also involved pre-existing

domain knowledge. However Sutton successfully applied a combination of SARSA with coarse input

coding the swing up problem [Sut96]. The control actions followed a bang-zero-bang scheme: the torque

applied to the middle joint was either 1Nm, -1Nm, or no torque. The frequency of control was 5Hz (the

controller was polled for an action five times per second). More recently, da Motta Salles Barreto and

Anderson [dMSBA08] introduced a harder version of the acrobot swing-up problem, based on Sutton’s,

by multiplying by four the frequency of control actions (using a 20Hz rather than 5Hz control frequency).

This makes the problem harder, requiring the controller to generate a much longer series of consistent

actions.

This work will focus on this harder version of the acrobot swing-up problem, described in detail

below. The description is followed by a review of existing solutions of earlier versions of the acrobot

26 Chapter 2. Literature Review

problem. These solutions, as opposed to the approach in this work, generally incorporate extensive

knowledge of the problem (e.g. dynamics, desirable level of the system’s energy, including the height

reached by a controller within the controller’s fitness function, etc.).

Formal problem description

Figure 2.5 illustrates the acrobot swing-up problem and the angular values which form the state of the

system.

Figure 2.5: The acrobot swing-up problem. The aim is for the controller to guide the tip (feet) of the

acrobot more than one link-height above the horizontal bar in the least amount of time. The tip of the

acrobot much reach the greyed area on top for a swing-up to be considered successful.

The equations of motion used here are the same as those used by Sutton [Sut96]. The system’s

state is entirely defined by the two angles θ1 and θ2 and their associated velocities θ̇1 and θ̇2. The action

chosen by the controller is a torque τ ∈ {+1,−1, 0} which is applied to the joint between the two links.

This action τ , and the current state of the system < θ1, θ2, θ̇1, θ̇2 > determine the angular accelerations

θ̈1 and θ̈2 according to the following equations:

θ̈1 = −d−1
1 (d2θ̈2 + φ1)

θ̈2 =

(
m2l

2
c2 + I2 −

d2
2

d1

)−1(
τ +

d2

d1
φ1 − φ2

)
where

d1 = m1l
2
c1 +m2(l21 + l2c2 + 2l1lc2 cos θ2) + I1 + I2

d2 = m2(l2c2 + l1lc2 cos θ2) + I2

φ1 = −m2l1lc2θ̇2
2 sin θ2 − 2m2l1lc2θ̇2θ̇1 sin θ2 + (m1lc1 +m2l1)g cos(θ1 − π/2) + φ2

φ2 = m2lc2g cos(θ1 + θ2 − π/2)

2.1. Reinforcement learning control 27

Table 2.4: Descriptions and values of the constant parameters in the acrobot problem

Symbol Description Value

l1, l2 Link lengths 1.0m

lc1, lc2 Link lengths to centre of mass 0.5m

I1, I2 Link moments of inertia 1.0kg.m2

g Gravity 9.8m.s−2

The role and value of the constants in the equations above are detailed in Table 2.4. As in Sutton’s

work, the angular velocities are bound as follows : θ1 ∈ [−4π,+4π], θ2 ∈ [−9π,+9π]. As in da

Motta Salles Barreto and Anderson’s work [dMSBA08], the control frequency used is 20Hz, making

the problem harder. The two-step Runge-Kutta fourth order method is used to integrate the equations of

motion. The starting position of the system is equivalent to that of the acrobat hanging from the bar at

rest, with both angles θ1 and θ2 set to zero.

Before being sent as input to the controller, the state of the system < θ1, θ2, θ̇1, θ̇2 > is pre-

processed. As the joints are allowed to fully rotate, the issue of the mapping of θ1 and θ2 onto a finite

range appears; should it be [0, 2π], [−π,+π], some other variation? To provide fully continuous input

states, even in the case of a complete rotation and avoid any human bias in the choice of the range, the

sin and cos of each angle are given as input in replacement of θ1 and θ2. Note that this transformation is

not specific to the acrobot, but to angular inputs which can loop cover the full range of possible angles.

With the angular velocities, the full input given to the controller at each timestep is therefore: sin θ1,

cos θ1, sin θ2, cos θ2, θ̇1, and θ̇2.

As in Sutton’s and da Motta Salles Barreto and Anderson’s work the only reinforcement given

during the evaluation of a controller is -1 for each timestep at which the goal is not achieved, and the

evaluation is stopped when either the goal is reached, or a maximum number of timesteps has lapsed.

Previous solutions

Contrary to the pole balancing problem and as opposed to the previously mentioned works of Sut-

ton [Sut96] and da Motta Salles Barreto and Anderson [dMSBA08], most methods employed to find

successful acrobot control strategies have required extensive knowledge of the dynamics of the acrobot

system, and detailed feedback of the proximity of the goal state. This is also opposed to the ‘black box’

approach taken in this work to not use any knowledge of the controlled system within the initial setup

of the controller beyond the number of inputs and outputs; and while the controller is running, to pro-

vide only minimal feedback on failure/success. Initial solutions to the acrobot swing up problem were

control strategies derived from the problem’s dynamics [Spo95] [BP97]. From the acrobot dynamics,

Brown and Passino also develop Fuzzy controllers [BP97]: Genetic algorithms are used, via a complex

fitness function, to tune the parameters of fuzzy controllers.

28 Chapter 2. Literature Review

Lookahead search solutions

Boone devised a lookahead search algorithm, for swing up which targeted the level of energy of

the system in the target position [Boo97b]; it used full knowledge of the system’s dynamics to estimate

the energy level of future possible states. Like in Sutton’s work [Sut96], the control frequency was 5Hz;

however Boone used bang-bang instead of bang-zero-bang control, likely to reduce the width of the

search tree to be considered at each timestep. Once the desired level of energy is reached, the lookahead

window size is doubled and the target of the search algorithm changes to finding a state roughly equal to

the handstand position. Boone’s work was successful and is interesting as it can likely be applied to the

control of a variety of systems, on the condition that the dynamics are known, and that the energy level

increases or decreases continuously towards the goal state.

In independent work, Boone presented a control method based on graph search [Boo97a]. He

divided the problem’s state space into 20 × 20 × 20 × 20 (160,000) tiles; Boone then used the tiles as

nodes of a graph, and progressively generated edges from a combination of action and known acrobot

dynamics. i.e. an edge was generated each time the search algorithm required knowing which tile/node

the system state would be in after taking a control action from another tile/node. The target of the search

was the maximisation of the acrobot’s tip height.

In the same paper, Boone also combined this method with an online learning model of the controlled

system’s dynamics to replace pre-existing knowledge of the controlled system’s dynamics. This method

assumes that the input at each timestep represents the full state of the controlled system and likely

requires minimal noise in the dynamics of the system, but was able to drastically decrease the number

of actual control steps until a successful control strategy was found. This was done by running the graph

search mentioned above using the online model to simulate the dynamics.

Interestingly, this approach could likely also be applied in conjunction with the control methods

introduced in this work, and effect a similar reduction in the number of effective control attempts needed

until success. This would particularly useful when applying these methods directly to learning to control

a real-world system (e.g. controlling an actual, physical, cart-and-pole system as opposed to a simulated

version of it), for which the running of a large number of control attempts is particularly inconvenient or

may damage the controlled the system. The control system resulting from the combination of Boone’s

online learning method and the evolutionary generation of controllers would in effect behave like a

rapidly adapting ‘black box’ controller.

A popular variant of the acrobot and associated solutions

Another variant of the acrobot system is also popular; in which the bottom link’s length is doubled,

while keeping an unchanged mass, and different moments of inertia are used [YNTI05]. The torque

values applied by the controller are also real (not bang-bang). The fact that this variant of the acrobot

can be swung up with a single back and forth swing (see ref [YNTI05], Figure 5) seems to indicate

that this version of the acrobot poses less of a challenge. Several switching controllers were presented

using this problem, varying in the swing-up and switching method used, but all using a Linear-quadratic

2.1. Reinforcement learning control 29

Regulator (LQR) derived from the system’s dynamics to maintain the acrobot in the handstand position

once swing-up is achieved.

Yoshimoto et al. combine multiple traditional linear controllers derived from the dynamics of the

system, and a RL method based on the SARSA algorithm to choose which of these controller should be

used at any given state of the acrobot [YNTI05].

Kawada et al. [KFOY05] evolve a swing-up trajectory (i.e. a series of actions, not a controller) via a

genetic algorithm; a complex fitness function ensures the evolved trajectories are both short and suitable

to be taken over by the stabilising controller.

Duong et al. [DKUY08] evolved the weights of a neural network (NN) to control the acrobot during

the swing-up phase. The NN had four neurons in the hidden layer, and one output neuron which produced

the torqued to be applied to the acrobot joint.

Reinforcement learning solutions

Most notably, Sutton [Sut96] set the swing-up problem as bringing the tip (the feet) of the acrobot

above one link height over the bar; bang-zero-bang control actions, and a control frequency of 5Hz were

used. Sutton combined the SARSA algorithm with a coarse function estimator which divided the state-

space of the problem according to an elaborate scheme, using 48 separate tilings, resulting in 18,648

tiles. At each timestep, the input state was translated in a combination of tiles on which the SARSA

algorithm was applied. No explicit pre-existing knowledge of the dynamics was used, but the tiling of

the input state used was very specific to the problem. However the sparsity of reinforcement given (-1

for each timestep not in a successful state, until success), makes this work impressive. It should be noted

that contrary to the methods which are the subject of this thesis, this approach is limited to Markovian

problems where the full state of the system controlled is given at each timestep.

Da Motta Salles Barreto and Anderson introduced the harder version of the acrobot studied in this

thesis [dMSBA08]. It differs from Sutton’s by quadrupling the frequency of control actions, from 5Hz to

20Hz. Da Motta Salles Barreto and Anderson find this makes the acrobot swing-up problem significantly

harder, and though they successfully apply the reinforcement learning methodology presented and a

policy iteration method [LP03], they were unable to generate a successful controller with any of the

several evolutionary approaches tried. These difficulties make this challenging version of the acrobot

swing-up problem particularly interesting.

In summary, the acrobot swing-up problem was found hard enough to generally require the injection

of large amounts of knowledge of the system into the controller. The approach in this thesis of limiting

to a minimum the information about the controlled system’s dynamics given to the controller, and giving

only sparse feedback, make it harder. Furthermore, the version of the problem used in this thesis will

be the more difficult version introduced by da Motta Salles Barreto and Anderson, for which they were

unable to find any evolutionary solution.

30 Chapter 2. Literature Review

2.1.4 The mountain car problem

The mountain car problem is a standard reinforcement learning problem in which a simple simulated

car must climb to the top of a mountain from the valley (See Figure 2.6). It was initially introduced by

Moore [Moo91] to illustrate a control method combining environment modelling and long-term policy

optimisation on a real-valued problem. The problem became more widely used after its inclusion in

Sutton and Barto’s introductory reinforcement learning book [SB98].

The problem’s difficulty arises from the limitation of the car’s engine which is not powerful enough

to propel it to the top of the mountain from a cold start at the bottom of the valley. The only possible

method for the car to reach the top of the mountain is to first swing back and forth to accumulate enough

speed to be able to climb the mountain; consequently a successful control must move the car away from

its final target before reaching it.

Figure 2.6: The mountain car problem. The car must reach the greyed area to the right; additionally, if it

reaches the red zone to the left it is blocked from going further up and its velocity is reset to zero.

The equations of motion and experimental settings used for the mountain car problem in this work

are taken from Sutton and Barto’s book [SB98]:

xt+1 = bound [xt + ẋt+1]

ẋt+1 = bound [ẋt + 0.001at + 0.0025 cos 3xt]

where xt and ẋt are respectively the car’s horizontal position and velocity at time t, and at is the output of

the controller at time t which must be one of {1,−1, 0}, corresponding respectively to the car’s engine

applying force to the car forwards (towards the right), backwards (towards the left), or not applying

any force to the car. The bound function keeps x within the range [−1.2, 0.5], and ẋ within the range

[−0.07, 0.07]. When the car’s position x reaches its left bound, the car’s velocity ẋ is reset to zero. For

each controller evaluation, the initial position and velocity of the car are random and taken uniformly

from these ranges. A controller receives a negative reinforcement of -1 for each timestep before success,

and 0 on success. The control run is successful and stopped if the car reaches the target position of 0.5.

A control run is limited to a maximum of a thousand iterations, and the inputs to the controller — the

position and velocity, x and ẋ — are both normalised to the range [0, 1].

2.2. Natural gene regulatory networks (GRNs) 31

Previous solutions

Moore’s initial solution of the problem was obtained via a control method generating a model of the envi-

ronment from the effects of the controller’s actions; immediate actions were then selected based on their

long-term consequences in simulated runs relying on the generated model of the environment [Moo91].

Sutton applied the reinforcement learning method SARSA, combined with coarse inputs to solve a vari-

ety of control problems, amongst which the mountain car problem [Sut96].

More recently, Metzen et al. used the mountain car problem as an online problem, effectively

allowing multiple controller to be tested during each control run, and stopping a control run only on

success [MEKK08]. They obtained good results with a neuroevolutionary method, despite these methods

usually requiring a separate control run for each controller [MEKK08]. Da Motta Salles Barreto and

Anderson used the mountain car problem as one of several problems to demonstrate the competitiveness

against other recent methods of a reinforcement learning method they introduce [dMSBA08].

In summary, the mountain car task is a classical reinforcement learning problem which has been

solved with a variety of methods (though not using any GRN-based method). Beyond generating the first

successful controller for this problem via a GRN-based method, this problem is of interest in this work

as it puts forward the ability of the method tested to produce controllers that generalise well. This is due

to the problem’s experimental setup, which requires each controller to start from a random position in

the state-space (both the initial position and velocity of the car being randomly selected from the full

range of possible values).

2.2 Natural gene regulatory networks (GRNs)

Our understanding of the workings of GRNs has been rapidly increasing in recent years. This section

summarises some of our current knowledge on the subject. Most relevant to the work in this thesis is

the regulatory aspect first described. This work focuses on models of GRN in isolation with few genes;

the details of the network structure, network motifs, and self organisation displayed by natural GRNs are

less important.

2.2.1 Regulation

GRNs in effect act as cell controllers, and are composed of the set of interactions between genes and

proteins in a cell; activated genes produce proteins which can in turn regulate the activation of other

genes [Dav06]. These regulatory proteins (known as transcription factors) can also interact in a wide

range of ways to determine the activation or, to the contrary, repression (non-activation) of genes. Various

other regulatory mechanisms exist, but play a significantly lesser role in regulation and will not be

considered in this work. The effect a protein has on a gene’s activation can take many forms; it can

individually promote or repress the activation of the gene, but proteins can also combine, controlling the

activation of a gene via the logical equivalent of AND or OR logical functions. The presence of a specific

protein can also increase or decrease the effect of another protein on the gene’s activation [YBD01].

32 Chapter 2. Literature Review

2.2.2 Network structure

Interestingly, both GRN and networks of protein interactions display scale-free topologies [BO04] [BLA+04].

The topologies of scale-free networks are such that the connectivity of nodes follows a power law distri-

bution [BA99]: the frequency of the nodes decreases at a higher rate than their connectivity. Networks

with scale-free topologies are robust [BO04]. Scale-free topologies can arise and be maintained through

the combination of the two generic mechanisms of growth and preferential attachment : the network

expands through the addition of new nodes, which attach preferentially to previously well-connected

nodes [BA99]. And indeed, GRN evolutionary genotypic growth occurs mainly through gene duplica-

tion [TB04], similarly, the scale-free topology of protein interaction networks is likely to be the result

of preferential attachment [EL03]. Additionally, GRNs have also been shown to be hierarchical [ED09]

and modular [BLA+04]. All these features illustrate the importance of evolutionary dynamics in the

generation of natural GRNs.

2.2.3 Network motifs

At a local level, GRNs display certain patterns of interconnections (termed ’Network Motifs’) in fre-

quencies much higher than would be expected in randomised networks [SOMMA02]. The prevalence

of these motifs in GRNs is not directly attributable to gene duplications [TB04], and has been shown to

be the subject of convergent evolution in E. coli and yeast [CW03]. This suggests that these motifs are

evolutionary desirable, and are not artifacts of the process of evolutionary growth of the GRNs.

2.2.4 Self organisation

Through cells, natural GRNs display an impressive ability to self-organise. Examples of GRN-controlled

cells self-organising include:

• Self-organising bacteria colonies, exhibiting rich, adaptive, behaviours through local sensing and

communication [BJ03].

• Some cellular slime molds form temporary bodies, aggregating into migrating multicellular

slugs [MH01].

• Multicellular eukaryotic bodies, with a single genotype, develop from a single cell to trillions

of cells. Cellular differentiation, through the specialisation of gene activation patterns, plays an

important part in that process [DRO+02].

2.3 Gene regulatory network (GRN) models
In this section, evolutionary GRN models (models conceived to be evolvable via artificial evolution meth-

ods such as genetic algorithms (GAs)) will be reviewed. In a rough chronological order following the

research trends, this review will begin with Kauffman’s pioneering work on random boolean networks

(RBNs), followed by neural network based GRN models. The more complex developmental GRN mod-

els aiming to generate complex shapes and designs will then be reviewed before looking at the most

recent direction, GRN models for control. GRN-based control being the topic of this thesis, particular

2.3. Gene regulatory network (GRN) models 33

attention will be given to the two models most used in this area : Banzhaf’s artificial regulatory network

(ARN), and Bentley’s fractal GRN (FGRN).

2.3.1 Random boolean networks (RBNs)

In 1969, Kauffman introduced random boolean networks (RBNs) [Kau69] as a way to model what he

called “genetic nets”. In RBNs each gene is a boolean variable which is set to true when activated, and

false otherwise. As in cellular automata, the array of genes is iteratively updated, each gene taking a new

value which is function of the state of a subset of the other genes in the previous iteration. As opposed

to a cellular automaton, the interactions are not locally restricted, the subset of input genes influencing

any given gene being randomly selected.

Formally, RBNs are composed of a set of N boolean variables each associated with a boolean

function of K inputs randomly taken from the N variables. All N variables are updated simultaneously

and take as value the current result of their associated function [Kau93]. Depending on the number K of

input genes, the resulting activation patterns have distinctive appearances. Kauffman distinguished three

regimes in which a RBN can be:

• K > 2. Chaotic regime.

• K = 2. Phase transition from order to chaos.

• K = 1. Ordered regime.

Figure 2.7 shows typical activation patterns for various value of K.

Figure 2.7: Typical activation patterns of RBNs through time for 50 genes with, from left to right, K =

1, K = 2, K = 3, and K = 4.

RBNs with low Ks can only transition ultimately from each state to a limited number of other

states. These forms basins of attractions, repeating indefinitely the same activation patterns which can

be seen as roughly similar to cell types [Wue98].

Kauffman also hypothesised natural GRNs operate in the phase transition from order to chaos and

several predictions were made about the characteristics of biological GRNs based on the idea that RBNs

with low K values were an accurate biological model. The number of genes in the human genome was

initially predicted to be 2,000,000 [Kau69], then 100,000 [Kau93], far off the current estimation around

30,000 [Dav06]. Other predictions associating RBN attractor basins with biological cell types were also

incorrect.

34 Chapter 2. Literature Review

Random boolean networks were the first evolutionary model of GRNs and displayed interesting

dynamics, but have had little practical applications.

2.3.2 Neural network based GRN models

Though inspired by a different natural system, neural networks have been used as evolutionary GRN

models.

Mjolsness et al. developed a complex developmental system based on a combination of neural

networks and a L-System [Lin68a] [Lin68b]-like grammar, for the purpose of modelling biological sys-

tems [MSR91].

A discrete-time recurrent neural network (DTRNN) [CSSM89] was used as a GRN to accurately

model the activation patterns in the cells of a C. elegans egg after the first four cell divisions [GW03].

Though the activation patterns were successfully reproduced, it is unlikely the evolved network was an

accurate model of the biological GRN studied.

Wagner presented a GRN model [Wag94] in effect very similar to a DTRNN, the only difference

between the presented GRN model and a DTRNN being the absence from his model of a bias input. The

model was used initially to study evolutionary dynamics, first looking at the effect of gene duplication

on gene activation patterns, then studying the evolution of evolutionary plasticity [Wag96], showing that,

among solutions of equally high fitness, evolution favours solutions of higher phenotypic robustness.

These models, though exploited to provide interesting insights into evolutionary dynamics, are of

limited interest for control applications, lacking features of natural GRNs such as regime-switching and

complex protein interactions.

2.3.3 Developmental GRN models

One of the most impressive products of natural GRNs being the generation of large multicellular organ-

isms composed of myriads of cells with many different functions, it is not surprising that GRN models

would be created with the aim of providing a platform for the automatic generation of complex shapes

and designs through artificial evolution. A less obvious application was the use of developmental GRN

models for the generation of controllers (e.g. neural network controllers); this is different from the

subject of this thesis which aims to rely on GRN models to directly control a system.

Jakobi presented a strongly biologically-inspired GRN model based on a DNA- network (ANN)

robot controllers [Jak95]. Reil introduced a similar, simpler model, titled “artificial genome” (AG) and

analysed its gene activation dynamics [Rei99]. Similarly to RBNs Reil found attractors and ordered,

chaotic and complex regimes; robustness of gene expression patterns to disturbances was also displayed.

Working with Reil’s AG model, Hallinan and Wiles studied the effects of changing the synchronicity of

the update rules AG [HW04b] [HW04a]. Hallinan and Jackway then studied the proportion of network

motives in evolved and random networks, with inconclusive results [HJ05].

Eggenberger introduced the artificial genetic regulatory system (AGRS), a multicellular model

based on digital strings for the evolutionary development of neural networks [Egg97] [Egg01]. This

model was used for pattern formation through the introduction of morphogen gradients [ED99],

before, coupling it with simulated physics, producing a variety of shapes through morphogen-

2.3. Gene regulatory network (GRN) models 35

esis [EH03] [EH04a]. The AGRS was then applied to the developmental generation of lens

shapes [EH04b].

Bongard created a GRN model for the evolution of designs for multicellular robots in a virtual, en-

vironment with simulated physics [Bon02]; the GRNs directed the development of both the morphology

and control system of the robots, with impressive results.

Kumar introduced the evolutionary developmental system (EDS) [KB03] combining a simple GRN

model in effect similar to a neural network, with complex cell physics, to evolve simple multi-cellular

shapes. The physical properties of the system were evolved in conjunction with the GRNs. This model

also had a limited control application, being used for very basic obstacle avoidance [Kum05].

Mattiussi introduced analog genetic encoding (AGE), a GRN model based on a DNA-like

genome [Mat05] from which free-floating components were extracted, connecting to form networks,

which were then evaluated as electrical circuits or neural networks [MF07]. Notably, this developmental

method of generating neural network controllers was successfully applied to the double pole balancing

problem with velocities withheld [DMF06].

A wide variety of interesting approaches have been taken to create GRN models for development,

these models are not however suitable for direct control without modifications.

2.3.4 GRN models for control

Despite the role of natural GRNs as a cell’s controller, GRN models have known comparatively little use

for control. This section does not cover the most popular such models, the ARN and the FGRN, which

are instead discussed in the following sections.

Quick introduced a simple GRN model for control which was applied to basic temperature control

and mobile light-following problems [QNDR03]. Knabe et al. extended Quick’s model to evolve GRNs

able to produce a periodic signal [KNSQ06] [KNS06]; the resulting model was also use for a simple

developmental application [KSN08].

Those models were only applied to very simple control problems, and have not been tested to the

same extent as the two models below.

2.3.5 Artificial regulatory networks (ARNs)

Banzhaf introduced the artificial regulatory network (ARN) [Ban03b], a GRN model based on DNA-

like binary strings, the genes being extracted from the initially random binary strings from any location

exhibiting a given promoter pattern. Protein matching to genes’ regulatory sites is determined by the

product of a XOR operation. The system was shown to exhibit interesting dynamics similar to those

seen in natural GRNs, notably oscillatory behaviours and the ability of genes to be expressed at different

rates [Ban03a].

Kuo et al. showed ARNs could be evolved to match target output functions such as sinusoids,

exponentials and sigmoids [KLB04]. Kuo et al. then produced scale-free ARN topologies — a common

characteristic of biological networks — through gene duplication and divergence [KB04]; however this

was done through biologically implausible whole-genome duplication events, the ability of the model to

36 Chapter 2. Literature Review

keep a scale-free topology through incremental duplication/divergence events would be more desirable

for real world applications. Similarly, Leier et al. studied the proportions of network motifs in ARNs

obtained through duplication and divergence [LKB07].

More recently, and concurrent with the work presented in this thesis, Nicolau et al. extended the

ARN model with mechanisms for input and output and have successfully applied it to the single pole bal-

ancing problem [NSB10]. Nicolau et al. then applied the system to algorithmic index trading [NOB12],

obtaining performances similar to a grammatical evolution system on the same data. Murphy et al.

extended the model further with the addition of a grammar increasing the potential expressivity of the

system’s output [MNH+12], without detriment to the system’s performance on the pole balancing prob-

lem. Lopes and Costa extended the ARN model by adding as an additional step extraction of a simplified

network [LC11] and successfully applied the resulting system to pole balancing.

2.3.6 The fractal GRN (FGRN) model

Bentley introduced the FGRN [Ben04b] (as “fractal proteins”), a GRN model in which the genome

consists of a list of genes with different functions, and the complex interactions between proteins and

genes are replaced by mathematical operations between two-dimensional fragments of a fractal. The

FGRN model was initially applied to developmental problems : FGRNs were evolved to produce specific

gene activation patterns [Ben04b]. FGRNs were also evolved to approximate from an input the square

root function [Ben05]. FGRNs were further shown to be fault-tolerant [Ben05], and able to increase in

robustness when left to evolve after the maximal fitness was reached [Ben04a].

The first control application of the FGRN model was the evolution of a controller for guidance of a

robot to a fixed destination while avoiding walls in the way [Ben03a]. Zahadat et al. then successfully

applied the FGRN model on a grid-world robot box-pushing problem [ZK08].

Concurrent with the work in this thesis, Zahadat et al. then applied the FGRN model to the dis-

tributed control of a modular robot for locomotion [ZCS+10] [ZSC12], and presenting a method to

translate an evolved FGRN into a simpler algorithmic representation [ZS12]. A more detailled version

of Zahadat’s work is available in his thesis [Zah11].

The recent increase in the number of publications on the subject of GRN-based control indicates

increasing interest in the field. The FGRN is chosen as the starting point for this work, as it has had a

more diverse range of applications; it will be described in detail in the next chapter.

Chapter 3

Fractal Gene Regulatory Networks (FGRNs)

for Development

In this chapter, Bentley’s original FGRN model will be described in detail, before covering some prelim-

inary experiments; then, to ensure the suitability of the FGRN model for control, the evolvability of the

FGRN model is first tested on a developmental problem. Developmental use tests whether the FGRN is

able to generate complex output patterns from only its internal workings, without the help of any external

input.

Different ways of using the system’s output to produce a phenotype (output-to-phenotype mapping

strategies) are also tested. The FGRN system can produce two different types of output: binary from the

behavioural (output) genes’ activation state, and real which is broadly equivalent to what would be the

concentration of proteins produced by those same behavioural genes. Two output-to-phenotype mapping

strategies, each based on one of these output types, are tested. It is shown that the more dilute approach,

using the FGRN system’s real outputs to influence the phenotype in multiple ways, can be advantageous.

It is foreseen that this could be of use when applying the system to harder control problems.

For this developmental task an irregular phenotype is needed: the mathematical constant π is chosen

as it is notably irregular, and the irrational number most widely known as such. Each output-to-phenotype

mapping strategy aims to reach π differently:

• Using the binary output, the binary representation of π is targeted as a gene activation series.

• Using the real output, an iterative process arithmetically combines the outputs of the system to

target the value of π.

The precision obtained with the second method is impressive: initially, the precision of the result

data type (sixty-four bit double precision floating point) is reached, forcing the use of non-native, higher

precision data types to keep track of the system’s performance (notably the precision of the system’s

parameters is not increased).

38 Chapter 3. Fractal Gene Regulatory Networks (FGRNs) for Development

3.1 System description
In this section, the original FGRN model is described. FGRN genomes are used as both a medium for

evolution (they are subject to mutation and crossover operations), and as running, developmental sys-

tems. A running FGRN genome takes no input and iteratively generates a series of outputs. This output

series defines the phenotype for a given genome. Such systems are a form of artificial embryogeny, the

phenotype being developed from the genome.

Therefore, as in biology, the mapping between genotype and fitness is indirect. The fitness of an

individual genome is a function of its phenotype only. This allows multiple genomes to map to the same

phenotype, a fact that can be used by artificial evolution to tune the genomes further than maximising

the fitness, by in effect evolving evolvability itself [Wag96]. One of the beneficial outcomes of this is

that more robust (less susceptible to external perturbations) phenotypes can be obtained by running the

evolutionary process further than the point at which a maximal fitness is obtained [Ben04a].

The FGRN genome will first be presented; the dynamics of the running FGRN will then be ex-

plained, before detailing the fractal chemistry which is at the heart of the system.

3.1.1 FGRN genome

Figure 3.1: The composition of a FGRN gene. From left to right: the type field; the promoter sec-

tion composed of the promoter protein definition Pp and the affinity threshold (AT); the output section

composed of the concentration threshold (CT) and the output protein definition Po.

The FGRN genome is a list of genes with different roles in the running system. All genes are

composed of the same fields, but act differently depending on the type(s) they possess (see Figure 3.2).

Each FGRN gene is composed of the following fields (illustrated in Figure 3.1):

• Type: The role of the gene in the running system. A gene can have any combination of the four

types: environmental (E), receptor (C), regulatory (R), and behavioural (B). In the running system,

during development, a gene with multiple types acts as multiple genes, each of one of its types,

and otherwise identical. The role of each gene type will be described in detail below.

• Promoter protein definition (Pp): defines the promoter protein. The promoter protein, combined

with the Affinity Threshold (AT), controls the activation of the gene. The concept of a promoter

protein departs from biology, as a biological gene’s promoter is not a protein (which is the product

of a gene), but a section of the gene’s DNA.

• Affinity threshold (AT): controls gene activation.

• Concentration threshold (CT): controls the amount of output protein produced when the gene is

activated. Initially this was also used as part of the promoter [Ben04b], but in Bentley’s further

work [Ben05], the activation condition based on CT was relaxed.

• Output protein definition (Po): defines the output protein, which is produced in variable concen-

tration when the gene is activated.

3.1. System description 39

Figure 3.2: A FGRN genome with one environmental (E) gene, one receptor (C) gene, four regulatory

(R) genes, and one behavioural (B) gene. All genes have the same structure and are composed of the

same fields. The greyed out portion of the genes are not used: receptor genes do not use the promoter

protein definition Pp, and environmental genes do not use the output protein definition Po; neither use

the affinity or concentration thresholds (AT and CT). The behavioural gene produces a boolean or scalar

output.

Gene types

A gene can have any combination of the four gene types below (the role of each gene type is illustrated

Figure 3.3), all genes are subject to evolution:

• Environmental genes allow for some constant protein input into the cytoplasm. The environmen-

tal promoter protein is always added (through the receptor protein) to the cytoplasm, at saturation

concentration.

• A receptor gene’s output protein acts as a mask for environmental proteins, letting through only

part of them. This allows a part of the cytoplasm to be reserved for internal computation only. A

genome can contain an arbitrary number of receptor genes, but only the first one is considered. If

no receptor gene is present, environmental proteins are allowed fully into the cytoplasm.

Having a separate receptor gene is particularly useful for applications which require several envi-

ronmental genes, such as the control applications studied in further chapters.

• Regulatory genes only directly affect the cytoplasm, acting therefore as hidden processing units.

• Each behavioural gene acts as a system output.

Genome evolutionary features

The following gene-based mutations are used; all mutation values are taken from a uniform distribution:

• Type: a type is added or removed from the gene.

• Affinity and concentration thresholds: a random value is added to the threshold.

40 Chapter 3. Fractal Gene Regulatory Networks (FGRNs) for Development

Figure 3.3: A graph of the roles of each gene in a running FGRN. Environmental(E) genes are masked

by the receptor(C) gene before being added to the cytoplasm. Regulatory(R) genes are activated as a

function of the cytoplasm and output back into it. Behavioural(B) genes produce the system’s output.

• Promoter and output protein definition Pp and Po initialisation and mutations mechanisms are

distinct and will be covered in the description of the protein chemistry (see Section 3.1.4).

The initialisation and mutation ranges used for each gene field are included in Table 3.1. The

following genome-based mutations are used:

• Gene duplication: a random gene is duplicated and the duplicate appended at the end of the

genome.

• Gene deletion: a random gene is removed.

Crossover occurs down to the gene level and is independent of gene types; for each gene position in

the genome, for each parameter in this gene (e.g. gene type, thresholds, protein coordinates), the value

used in the child genome is randomly selected from one of the two parents. If the crossed-over genomes

are of different sizes, the size of the genome produced will be randomly selected from one of the two

parents. Bentley used a mutation rate of 0.01 per gene component for similarly sized genomes [Ben04b];

for preliminary runs of the developmental experiments detailed in the next two sections of this chapter,

it was found that the system generated fitter final solutions with a mutation rate of 0.02. A mutation rate

of 0.01 was therefore applied from there on. Crossover is always applied.

Before the FGRN can be used to produce an output, there is a transition step from the evolved

genome to the running genome:

• Genes with multiple types are transformed into multiple genes of a single type.

• Only the first receptor gene in the genome is kept.

Table 3.1: The initialisation and mutation ranges for the FGRN gene fields.

Field Initialisation range Mutation range

Affinity threshold [−10, 000, 10, 000] [−5, 000, 5, 000]

Concentration threshold [0, 200] [−100, 100]

3.1. System description 41

3.1.2 The FGRN genetic algorithm (FGA).

The use of a GA as optimiser in conjunction with the FGRN genetic representation, or indeed any

artificial GRN-based representation, is consistent as evolution is the method used by nature to produce

fit GRNs. The FGRN model is also particularly suited to GAs (as opposed to optimisation methods

relying on solutions having a fixed number of parameters), allowing, as in nature, the duplication or

deletion of whole genes. The GA used in conjunction with the FGRN model in all published work prior

to this one was created by Bentley [Ben96]; as it is nameless it will be abbreviated here to FGA.

The FGA preserves a large portion of the population from one generation to the next: the fittest 20%

of the previous generation are kept in the population unmodified. The remaining 80% is filled with child

genomes produced from two parents randomly selected from the fittest 40% of genomes, then mutated.

Genomes are aged at each generation and can only persist unmodified in the population until they reach

a maximum age of ten. The main loop of the FGA is detailed in Algorithm 3.1; the constants used and

the values they generally, and here, take are shown in Table 3.2. The FGA strongly favours the fittest

individuals as parents. This extreme elitism is likely to lead to premature convergence to only locally

optimal solutions.

Algorithm 3.1: The FGA main loop being run for GenerationCount generations. The functions used in the

main loop are detailed in the Appendix in Listings A.1, A.2, and A.3.

declare integer CarriedOverCount := PopulationSize − ChildrenCount
declare array children := array(ChildrenCount)
declare struct child genome
declare array population := newRandomPopulation(PopulationSize)
sortByDecreasingFitness(population)

{ Run for GenerationCount }
for generation := 1 in GenerationCount
{ Generate children }
for i := 1 in ChildrenCount

parent1 := pickParentGenome(population)
parent2 := pickParentGenome(population)
child genome := crossover(parent1, parent2)
mutate(child genome)
children[i] := child genome

end

ageAndRemoveExpired(population)

{ Keep the top pre−existing genomes, and add the children to the population }
population := population[1..CarriedOverCount] + children
sortByDecreasingFitness(population)

end

{ The fittest genome obtained }
return population[1]

42 Chapter 3. Fractal Gene Regulatory Networks (FGRNs) for Development

Table 3.2: The constants associated with the FGA, with their usual values.

Constant Description Value

PopulationSize Number of genomes in the population 100

ChildrenCount Number of genomes generated in a generation 80

MaximumAge Maximum age of an individual 10

ParentCoefficient Proportion of the population used as parents 0.4

RandomParentCoefficient Chance of picking up a parent randomly from the whole population 0.01

3.1.3 Fractal proteins

In a natural GRN, the gene/protein/environment interactions are many and complex. FGRN restricts

itself to those that are hoped to be the main ones [Ben09]:

• The mapping of a gene’s protein coding section to the protein product.

• The interactions amongst proteins floating in the cytoplasm.

• The interactions between those proteins and the promoter section of individual genes, defining the

activation of these genes.

Bentley chose to not attempt to replicate these complex biological processes, but to instead substi-

tute a relatively computationally faster set of interactions, following a principle of “deliberately incorrect

modelling” [Ben09]. The set of interactions defined by Bentley, fractal chemistry, is based on the con-

cept of the protein as a two-dimensional sampling of the Mandelbrot fractal, and on simple mathematical

operations. As seen in Figure 3.1, each FGRN gene contains two protein definitions: Pp for the promoter

protein, and Po for the output protein. Each of these is a triplet of real numbers < x, y, z >.

Defining a gene promoter as a protein is an odd choice given the completely different functions in

nature of a gene promoter and its protein encoding section, and is not justified in Bentley’s work.

A fractal protein defined by < x, y, z > is a square subset of the Mandelbrot set with sides of

length z and centre coordinates < x, y > that define the real and imaginary parts of a complex num-

ber [Ben03b]. The colouring from white to black of a sample point within the square represents the speed

with which the value at that point falls out of the range [0, 2] upon iteration of the Mandelbrot equation,

with black sampling points generating values that remain bounded within a radius of 2. In principle

a fractal protein is an object of arbitrarily high complexity, though in practice to limit computational

demands the square subsets are usually implemented as 15 × 15 bitmaps, with the < x, y > value of a

pixel being that of the point at its centre. It might be questioned at this point whether a 15 × 15 bitmap

of a coarsely represented fractal is sufficient to capture the complexity of a fractal.

A fractal protein has an associated concentration that alongside the concentrations of other protein

constituents determines the degree to which it can act towards further gene activations. Although a pro-

tein’s concentration is stored as a single real value (in the range [0, 200] for historical reasons, 200 being

the saturation value arbitrarily chosen by Bentley [Ben04b]), it can also be represented as a bitmap for

3.1. System description 43

ease of use in the merging and comparison chemistry operations described below; indeed, the cytoplasm,

merger of multiple proteins, also merges the protein’s associated concentrations, resulting in a patchwork

of concentrations being associated with it. Figure 3.4 shows an example of a fractal protein at 15 × 15

resolution and its associated concentration bitmap. Each point of a concentration bitmap is coloured

from white (absence of protein) to full red (protein present in saturation).

Figure 3.4: A fractal protein (left) and associated concentration bitmap (right). Note that the non-white

points of the concentration bitmap correspond to the non-black points of the protein. The closer to

saturation the concentration of a protein is, the redder its color part is (a low concentration would be a

faded pink).

As in ref [Ben04b] and all subsequent FGRN work, when evolving FGRNs, the promoter and output

protein coordinates of the genes of the initial genomes are randomly assigned the coordinates of one of

ten pre-evolved proteins (see Figure 3.5), the use of this set of proteins was found by Bentley to reduce the

number of evaluations to successful solution in his initial work on simple pattern generation [Ben04b].

Each coordinate x, y, or z is mutated independently. A uniformly distributed random real value in the

range [−0.5, 0.5] is added to the mutated coordinate. When two protein definitions are crossed over,

as part of a gene crossover, each coordinate of the resulting protein definition is randomly chosen from

either gene’s corresponding protein definition. Figure 3.6 gives an overall view of an FGRN gene,

including the link from protein definition to protein.

Figure 3.5: The ten pre-evolved fractal proteins used in FGRN genome initialisation. This protein set

was generated by Bentley to have proteins with a varied set of boundaries [Ben04b]. Genetic drift tends

to produce all black or all white proteins of less interest; in particular this can be seen in the output

proteins of environmental genes, and the promoter proteins of receptor genes, which are not subject to

direct evolutionary pressure, as they are not a functional part of the running system. This can be seen in

the genome illustrated in Figure 3.13 at this end of this chapter.

44 Chapter 3. Fractal Gene Regulatory Networks (FGRNs) for Development

Figure 3.6: A gene in detail. a) The type specifies that this gene is expressed as both a behavioural

(B)and a receptor (C) gene, but not as a regulatory (R) or an environmental (E) gene; the promoter

< xp, yp, zp > and output < x, y, z > protein coordinates define different fractal portions of the Man-

delbrot set. Bottom left: a schema describing the mapping from protein coordinates to fractal portion.

b) Top: the fractal portion pointed at by the output coordinates < x, y, z > of the gene. Bottom: the

resulting 15× 15 fractal protein.

3.1.4 Protein chemistry

The protein chemistry operations underpinning the working of an FGRN: decay, mask, merge, and com-

pare, are detailed below.

Decay

At the end of each running iteration the concentration values of the regulatory proteins present in the cell

are decayed and those with values less than a fixed threshold εd have their concentration set to zero (and

so are no longer considered present in the cell). This process is illustrated in Figure 3.7a, and formalised

in Equation 3.1.

ci+1 = max(0, λp · ci − εd) (3.1)

where:

- ci is the protein concentration at iteration i.

- λp is the persistence coefficient (set to 0.8).

- εd is the minimum protein diffusion (set to 0.2).

Mask

This is the filtering mechanism by which a receptor gene controls the parts of environmental proteins

that enter the cytoplasm. Full black regions of the receptor protein bitmap are treated as opaque and all

others as transparent. An example of masking is shown in Figure 3.7b.

3.1. System description 45

Figure 3.7: Protein chemistry. a) Decay: the concentration associated with a protein is reduced. b)

Mask: a protein (centre, above arrow) masks another. c) Merge: in this case three proteins and their

associated concentration bitmaps are merged into one. Note the patchwork nature of the merged protein’s

concentration bitmap.

Merge

In principle a merged product is calculated by iterating through the fractal equations for each protein and

choosing as winner for each pixel that value that becomes unbounded most quickly. In practice merging

can be carried out more simply by comparing the stored values for the bitmaps and choosing at each point

the maximum pixel value (pictorially, that closest to white); merged proteins thus tend to be dominated

by white regions, as can be seen in Figure 3.7c. When proteins are merged the concentration at each

point becomes that of the winner, producing a concentration bitmap with the ‘patchwork’ appearance in

this example.

Compare

The promoter protein bitmap is compared with the merged product, and the sum of absolute differences

between its non-black pixels and the corresponding pixels in the merged product is calculated, which

determines the probability of activation of regulatory and behavioural genes, as detailed in Equation 3.2

pai,j =

 0.5 + (tanh(
∆Pi,j−ATi−Ct

Cs
))/2.0 if ATi ≥ 0

0.5− (tanh(
∆Pi,j+ATi−Ct

Cs
))/2.0 if ATi < 0

(3.2)

where:

- pai,j is the activation probability of gene i at iteration j.

- ∆Pi,j is the sum of absolute differences between the non-black pixels of the promoter protein of

gene i and the corresponding pixels in the merged product at iteration j − 1.

- ATi is the affinity threshold of gene i.

- Ct is a threshold constant (set to 0).

- Cs is a sharpness constant (set to 20).

The mean value c of the corresponding pixels in the merged concentration bitmap is calculated.

46 Chapter 3. Fractal Gene Regulatory Networks (FGRNs) for Development

Gene activation

If a gene is determined to be activated, c is used in conjunction with the concentration threshold CT to

determine the gene’s output level.

For regulatory genes, protein output r is determined according to Equation 3.3. The output r is

then added to the current concentration of the protein in the cell, which is then constrained to the range

[0, 200]. The constantsCw andCi are set to the same values as in previous FGRN experiments [Ben04b].

A notable characteristic of the protein output r not mentioned in Bentley’s work is that r can be negative,

in effect speeding up the disappearance of a protein from the cytoplasm.

r = c
tanh(c−CTCw

)

Ci
(3.3)

where:

- r is the gene’s protein output.

- c is the mean concentration.

- CT is the gene’s concentration threshold.

- Cw is a constant (set to 30).

- Ci is a constant (set to 2).

For each Behavioural gene, the output o is determined according to equation 3.4.

o = sgn(AT) · (c− CT) · x (3.4)

where:

- o is the gene’s output.

- AT is the gene’s affinity threshold.

- c is the mean concentration.

- CT is the gene’s concentration threshold.

- x is the first coordinate of the gene’s output protein.

The system is run through a fixed number of iterations, each consisting of creating a new cytoplasm

by merging the environmental proteins (masked with the receptor protein) and the output proteins of

regulatory genes with a non-null concentration. Regulatory and behavioural genes are activated proba-

bilistically as a function of promoter-cytoplasm interactions : an activation probability pa is calculated

for each gene, and the gene is only activated if a random value uniformly distributed on the range [0, 1]

is less than pa. The aim of this indirect, probabilistic, mechanism is to generate a smoother fitness land-

scape when evolving FGRN genomes, by allowing a single genome to produce multiple, closely related

phenotypes, and letting evolution control the degree of randomness in gene activation. In practice early

FGRN genomes tend to display more variety in the phenotypes they generate, allowing for greater ex-

ploration, whereas when an optimal phenotype is reached, evolution typically reduces the randomness

3.1. System description 47

of the genome that generated it, until there is no randomness left in the activations: once a good phe-

notype is found, evolution favours genomes that can reliably produce that phenotype and the activation

probabilities produced by the associated running systems then tend strongly towards the values 0 or 1,

thereby rendering the running systems purely deterministic. Furthermore, evolution then tends to favour

genomes which are less sensitive to mutations in the activation patterns (phenotype) they produce; in

effect evolution controls the evolvability of FGRN genomes.

3.1.5 FGRN dynamics

Algorithm 3.2 details the FGRN development process. The functions associated with Algorithm 3.2 are:

• rand(): get a uniformly distributed random real scalar in the range [0, 1].

• mergePromoterProteins(genes): merge the promoter proteins of an array of genes into a single

protein.

• merge(proteins to merge): merge an array of proteins with their associated concentrations into a

new cytoplasm composed of a merged protein and a bitmap of the merged concentrations, as

illustrated in Figure 3.7c.

• decayConcentration(gene): decay a genes’s concentration according to Equation 3.1.

• maskProtein(protein, mask): return protein masked by the other protein mask as illustrated in Fig-

ure 3.7b.

• compareCytoplasmToPromoter(cytoplasm, promoter): compare the cytoplasm (composed of merged

protein and merged concentration bitmap) with a gene’s promoter. Return a tuple composed of the

sum of absolute differences ∆P , and the mean concentration c.

• activationProbability(AT, ∆P): calculate activation probability according to Equation 3.2.

• regulatoryConcentrationUpdate(CT, c): return the change in the concentration of the output protein

of a regulatory gene according to Equation 3.3.

• behaviouralOutputValue(gene, c): get the output for a behavioural gene according to Equation 3.4.

48 Chapter 3. Fractal Gene Regulatory Networks (FGRNs) for Development

Algorithm 3.2: The development main loop of Bentley’s FGRN. Key: AT = affinity threshold, CT =

concentration threshold.

{ split the genome into arrays of genes }
declare array environmental genes := getEnvironmentalGenes(genome)
declare array behavioural genes := getBehaviouralGenes(genome)
declare array regulatory genes := getRegulatoryGenes(genome)
declare struct receptor gene := getReceptorGenes(genome)[1]
declare struct receptor protein := receptor gene.output protein

declare struct environmental protein := mergePromoterProteins(environmental genes)
declare struct default protein := maskProtein(environmental protein receptor protein)

declare struct cytoplasm := <default protein, saturation>

for i := 1 in developmentalStepCount
{ decay regulatory gene concentrations, merge into cytoplasm if still present }
declare array proteins to merge := [<default protein, saturation>]
for each gene in regulatory genes

decayConcentration(gene)
if gene.concentration > 0

append(proteins to merge, <gene.output protein, gene.concentration>)
end

end
cytoplasm := merge(proteins to merge)

{ activate regulatory and behavioural genes }
for each gene in regulatory genes, behavioural genes

gene.activated := false
<∆P , c> := compareCytoplasmToPromoter(cytoplasm, gene.promoter protein)
pa := activationProbability(gene.AT, ∆P)
if rand() < pa { stochastic activation }

if gene.is regulatory
gene.activated := true
gene.concentration += regulatoryConcentrationUpdate(gene.CT, c)

else if gene.is behavioural
if c >= gene.CT

gene.activated := true
gene.output value := behaviouralOutputValue(gene, c)

else
gene.output value := 0

end
end

end
end

outputs := []
for each gene in behavioural genes { extract output values }

append(outputs, gene.output value)
end

end

3.2. Preliminary experiments 49

3.2 Preliminary experiments
The FGRN system originally developed by Bentley was fully reimplemented; this process allowed to

solve some discrepancies in Bentley’s published descriptions of the systems (e.g. the protein decay

calculation [Ben04b], and the issues with free floating proteins described below), and to verify that the

resulting system description, given in the previous section, was sufficiently descriptive to reimplement

the system. Example proteins of known coordinates and aspect [Ben04b] were reproduced with the

reimplemented system and were found to match exactly the proteins produced by Bentley’s system.

Bentley’s previous experiments with the FGRN were reproduced with the reimplemented system (the

results of these experiments were found to be consistent with those published by Bentley):

• A set of 10 distinct fractal proteins was evolved [Ben03b].

• FGRN genomes were evolved to produce specific activation patterns [Ben04b] (see Figures 3.8

and 3.9).

• FGRN genomes were evolved that output the square root of their input [Ben05].

B1 : + + +
B2 : + +

B1 : + +
B2 : +++

Figure 3.8: Target activation patterns lasting five developmental iterations. B1 and B2 are respectively

the first and second behavioural genes of the FGRN. ‘+’ signifies the gene must be activated at a given

iteration, ‘ ’ that it must not be activated.

B1 : ++++ ++++

Figure 3.9: Target activation pattern. As in Bentley’s work [Ben04b], the fitness function had to be

modified for FGRN genomes to be reliably evolved to produce this activation pattern. This modification

consisted in subtracting to the fitness value the absolute difference between the number of activated-

deactivated switches of the pattern (three in this pattern), and the number of those switches in the pattern

produced by the tested FGRN; this additional hint favoured FGRNs producing the right “shape” of

pattern.

50 Chapter 3. Fractal Gene Regulatory Networks (FGRNs) for Development

Free floating proteins

The proteins produced by the regulatory genes of a FGRN have often been presented as free floating in

the equivalent of a cytoplasm [Ben09] [Ben04a]; and much emphasis is put on the structural similarity of

FGRNs with a biological cell. However that is not an accurate description of the workings of the system.

In the FGRN system, a separate protein concentration is maintained not for each regulatory protein, but

for each regulatory gene. This difference is significant, as regulatory genes producing identical output

regulatory proteins are not in practice not rare. There are two reasons for this:

• At the beginning of the search, all the proteins of the randomly initialised genomes of the initial

population are set to one of ten pre-evolved proteins and the gene duplication mutation operator.

• The gene duplication mutation operator can create duplicates of regulatory genes with the same

output protein. Such gene duplication is common in biology and is an important force in genotypic

evolution [TB04]. The ability of natural GRNs to perform consistently after a gene duplication

event allows for the evolution of complex behaviours through duplication/divergence mechanisms.

Attempting to follow strictly Bentley’s published descriptions of the FGRN system, a version of the

system was implemented with free-floating proteins; the concentrations of identical proteins produced

by different regulatory genes were then merged together: the output of these regulatory genes were

both added to the current protein concentration, and decay was applied to the resulting total protein

concentration.

Experiments were run on both the short activation patterns described in Figure 3.8, and on the

π problems described in the next sections. The use of free-floating proteins led to a significant and

important decrease in the system’s performances, both in terms of the maximum fitness reached, and the

number of generations it took to reach that fitness. This inability of the FGRN to perform well with free-

floating proteins raises doubts on Bentley’s claims of structural similarity of the FGRN with biological

cells.

3.3. Experiments 51

3.3 Experiments
Before moving to control problems, the capability of the FGRN system to produce an arbitrary, irregular,

phenotype without the help of external inputs will be tested. A good performance here would make it

likely that the FGRN system will be able to generate complex control action patterns when required.

Additionally, different output-to-phenotype mapping strategies will be studied. The output of an

FGRN system can be used in different ways to produce the final phenotype; in particular, the output of

the FGRN system at each running iteration can affect a variable number of components of the pheno-

type. Two output-to-phenotype mapping strategies opposed on this scale are studied (both mappings are

detailed in the Experimental Setup section below):

• Binary representation. With this mapping, each bit of data of the phenotype is produced by the

output of just one developmental iteration,

• Approximation algorithm. With this mapping, the outputs of each developmental iteration influ-

ence multiple components of the phenotype throughout development.

The results show that a more dilute approach, letting the output of the FGRN system influence the

phenotype in multiple ways, can be advantageous. It is foreseen this could be of use when applying the

system to hard control problems.

3.3.1 FGRN evolvability: π as a phenotype

π is an irrational number: its digital representation contains no infinitely repeating pattern. It is also

highly irregular; as a phenotype, π is complex, but non-random. Algorithms exist for its production,

some are sums of diminishing terms giving an increasingly accurate estimation of π (e.g. π4 = 1− 1
3 +

1
5 −

1
7 + ...). Expressed in binary representation, the first 32 bits of π are : 1100 1001 0000 1111 1101

1010 1010 0010.

Developmental systems have often been used to produce repetitive, regular phenotypes; but have

not been proven to be as useful for irregular phenotypes. It is therefore also an interesting challenge to

try to produce an extremely irregular phenotype with a developmental system.

FGRN genomes will be used as developmental systems, and evolved to produce π. An obvious

approach will first be attempted, directly using the FGRN output, each running iteration producing one

bit of data of the phenotype π. An indirect approach will then be attempted, giving the FGRN system

more freedom, by aiming to produce instead an algorithm approximating the value π. Ideally, it is hoped

to obtain an FGRN genome able to approximate π with increasing precision, even when run beyond the

number of iterations on which it was evolved.

3.3.2 Experimental setup

Experiment 1 - binary representation

FGRN genomes will be evolved to produce the binary representation of π as a temporal activation pat-

tern. The fitness of the genomes is the number of bits correctly produced by the system before the first

error.

52 Chapter 3. Fractal Gene Regulatory Networks (FGRNs) for Development

Table 3.3: Median and fittest π approximations obtained for each experiment

Median Fittest

Experiment 1 3.1411 3.1415926

Experiment 2 3.141592658 3.141592658973593

FGA, the genetic algorithm described in Section 3.1.2 is used. The GA settings are the same as

in previous FGRN work. Copy and delete mutations are used on genes at the level of the genome, and

creep mutation (adding or subtracting a small random value) is applied to the parameters. All muta-

tions occur with a 0.01 probability, which was found in preliminary experiments to give produce fitter

individuals than the previously used 0.02 value; crossover is always applied. The population contains a

hundred individuals, including a child population of eighty. The initial population will contain randomly

generated FGRN genomes with one environmental gene, one receptor gene, four regulatory genes, and

one behavioural gene. If a mutation removes the behavioural gene the output of the resulting genome is

always zero. The GA is run for a thousand generations and a hundred runs are executed.

Experiment 2 - approximation algorithm

FGRN genomes are evolved as algorithms approximating π. At each developmental iteration, the out-

put of the first behavioural gene will be used as a scaling factor; the mean of the output of the other

behavioural genes will be divided by the product of this and the previous scaling factors. If a scaling

factor is equal to zero, it will be ignored. If a genome contains zero or one behavioural gene, the total

output will be zero. The final approximation is the sum of these terms, over all iterations. This process

of generating an approximation p of π is formalised in the following equation:

p =
∑T
i=1

∑N
n=2 bn,i
N−1∏i
t=1 b1,i

where:

- T is the total number of developmental iterations.

- N is the number of behavioural genes.

- bn,i is the output of the nth behavioural gene at iteration i.

The FGRN genomes are evaluated on thirty-two iterations. The fitness of a solution is the absolute

difference between the final approximation p and π. All other experimental settings are identical as in

Experiment 1.

3.3.3 Results

Results 1 - binary representation

The fittest FGRN genome evolved produced the binary representation of π to up to twenty-six bits (see

Figure 3.10 and Table 3.3).

3.3. Experiments 53

Figure 3.10: FGRN for π : For each degree of precision, the percentage of runs that have reached it.

Top: Results for Experiment 1. Bottom: Results for Experiment 2. The binary scale above corresponds

to the decimal scale below in terms of accuracy.

Results 2 - approximation algorithm

The fittest FGRN genomes evolved reached the limit of the precision of the datatype initially used, which

was floating point double on sixty-four bits. The median number of decimal places reached was eight

(thirty-three bits) : 3.141592658. The highest number of decimal places reached was fifteen (fifty-two

bits) : 3.141592653589793. More detailed results are displayed in Figure 3.10 and Table 3.3.

The experiment was rerun, using a datatype of unlimited precision for computation of the approx-

imation p; the fittest FGRN genome reached twenty-three decimal places. However, the output of the

algorithm diverged from π when run for more than the thirty-two iterations on which it was evolved. It is

therefore likely the specific properties of π where not exploited to generate the approximations, but that

the overall system was flexible enough instead to produce an accurate approximation of an “arbitrary”

number.

Evolving FGRN genomes on a variable number of developmental iterations at each fitness evalu-

ation was attempted to obtain an algorithm that would keep on producing better approximations for as

long as it is run. This was unsuccessful, the resulting evolved FGRN genomes producing poorer approx-

imations. In some extreme cases, the evolutionary process got stuck in a local minima producing the

exact value of zero, by removing one of the behavioural genes.

54 Chapter 3. Fractal Gene Regulatory Networks (FGRNs) for Development

Example result

The output of an FGRN genome from Experiment 2, producing π to the maximum precision of the

floating point double datatype is shown Figure 3.11 (approximation p) and Figure 3.12 (behavioural

genes output). Repeating patterns can be seen in both figures.

Figure 3.11: The approximation of π throughout the 32 development iterations, from an FGRN genome

producing an approximation exact to the maximum precision allowed by the double datatype. The same

pattern is repeated at increasingly smaller scales, as development occurs. On each graph the horizontal

axis is the number of developmental iterations, and the vertical axis is the associated approximation

value.

Figure 3.12: Left: the output of the first behavioural gene, the inverse of which is used as a scaling factor

in the approximation p. Right: the mean of the outputs of the other behavioural genes, which is the main

component of p . The horizontal axes show the number of developmental iteration, and the vertical axes

the associated value.

3.4. Discussion 55

Figure 3.13: The individual genes and their promoter and output proteins, with concentrations of their

output proteins over time (B = behavioural, C = receptor, R = regulatory, E = environmental). A blue

bar on the left of a gene indicates a positive affinity threshold, and a red bar a negative affinity threshold;

genes with a grey bar on the left have an affinity threshold, but it is not used by the running system (e.g.

environmental, receptor genes).

Running system

Figures 3.13, 3.14 and 3.15 show the FGRN genome running as a developmental system, illustrating

another solution that approximated π to fifteen decimal places in only nine iterations.

3.4 Discussion
FGRN genomes were evolved to produce approximations of π with two different developmental ap-

proaches. It was shown that an indirect approach, giving the FGRN system more freedom in the way it

influences the final result, by letting it exploit its internal patterns, was more effective for this than the

more obvious direct approach.

The attempt to obtain an algorithm that could indefinitely produce increasingly better approxima-

tions of π was unsuccessful, but the precision reached by the fittest solutions was impressive, exceeding

the precision of the double floating point datatype initially used. This constitutes a further demonstration

of the evolvability of the FGRN system from Bentley’s FGRN developmental work [Ben04b] [Ben05].

56 Chapter 3. Fractal Gene Regulatory Networks (FGRNs) for Development

Figure 3.14: The merging of the proteins present in the cell at each developmental iteration, with their

associated concentration bitmap. For each iteration, the merging is shown above, and the concentration

bitmap below. Iteration 0 corresponds to the state of the cell before the first iteration, at which point it is

a function of only the environmental and receptor genes. Several overlapping patterns can be observed

in both the merging and the concentration bitmap.

3.4. Discussion 57

Figure 3.15: Example result: the approximations produced by the FGRN at each developmental iteration.

‘Cycle’ is the current iteration; the background colour displays changes in the approximation value (light

blue: increased, light red: decreased, white: no change). ‘Output’ is the current approximation. ‘Prg.’

indicates the progression of the approximation (blue: better, red: worse). ‘Pos.’ indicates the position

of the approximation with respect to π (blue: above, red: under). Note that the precision of the internal

floating point representation is exceeded by developmental iteration nine, so the system is unable to

improve further.

Chapter 4

FGRNs for Control

Following the presentation of the FGRN model in the previous chapter, and the demonstration of its

application to the developmental problem of generating π, the adaptations of the FGRN model allowing

it to exploit external inputs for use in control will be detailed in this chapter, before the model is then

applied to multiple versions of the pole balancing problem. The pole balancing problem (described in

detail in Section 2.1.2), is a well known benchmark control problem, that of balancing a free-swinging

pole on a moving cart (also known as the inverted pendulum problem) on a finite track by pushing the

cart left or right.

Modifications to the model and in the genetic algorithm employed to evolve the genomes will be

shown to improve performance, in both the speed and reliability with which a successful controller is

found. After each change the modified system is then re-evaluated on the pole balancing problems. In

summary the following modifications are made to improve the system’s performance:

• An alternative genetic algorithm to the one used in all other FGRN work is used, which improves

the reliability with which a successful controller is found.

• Aiming to discard unneeded physical constraints, negative concentrations are introduced to repre-

sent negative inputs, a more straightforward representation.

• A change in the FGRN algorithm, which was present in Bentley’s initial work [Ben04b], but

was disabled in Bentley’s further work [Ben05], will be implemented. It consists of adding a

supplementary condition to the activation of behavioural genes, based on the concentration of

the cytoplasm “protein”. The difference in the system’s behaviour, and the significant resulting

improvement in performance, will be discussed.

The performance of the system will then be compared with that of other control systems; specifi-

cally, simple recurrent neural network (RNN) controllers are evolved and tested in the exact same con-

ditions, for comparison.

The work detailed in this chapter was at the time of publication one of the first applications of a

GRN model to a substantial, well-recognised, control problem, closely following after Nicolau et al.’s

work [NSB10], which used a different problem setup using randomised cart-pole starting positions,

and focused more on ensuring the successful solutions found worked for as much of the state-space of

4.1. Initial system adaptations for control 59

Figure 4.1: The workings and role of each gene type in an FGRN controller. It is very similar to

Figure 3.3 in the last chapter. ‘x’ represents the inputs to the controller, and ‘y’ the outputs. Key: E:

environmental, C: receptor, R: regulatory, B: behavioural.

starting positions as possible. In terms of the number of failures before successful control, which is

equivalent for evolutionary systems to the number of evaluations until a good solution is found and is the

most commonly used performance metric for this problem, the performances obtained by Nicolau et al.’s

system were also not as good as those obtained here. Some simple, non-standard control applications had

been attempted by Bentley [Ben03a] and Zahadat et al. [ZK08]. However an application of the system

on a standard, difficult, control problem had yet to be attempted.

4.1 Initial system adaptations for control
The FGRN model is essentially the same when used for control as when used for development, the main

difference residing in the acceptance of external inputs. In keeping with the biological metaphor, the

concentrations of environmental proteins are mapped to the input values. Similarly to developmental

use, the genes of a control FGRN genome can have any combination of the same four types. However

some gene types now have different roles due to the necessity of integrating external inputs into the

system’s workings:

• Environmental genes provide input to the system. There is one environmental gene per com-

ponent of the input vector x. Each input component here is mapped to the R range [0, 1], as it

represents a concentration linked to its environmental gene. If, for instance through mutation, the

number of environmental genes is lesser than the number of inputs, the first inputs are associated

with the existing environmental genes, and the remaining inputs are ignored by the system.

• Receptor genes act as an input filter. A receptor gene allows for part of each of the environmental

proteins, acting as inputs, to be merged into the controller’s internal state. This allows the system

to reserve part of the internal state of the controller for internal computations only.

• Regulatory genes perform internal computations based only on the internal state (cytoplasm) of

the system, which however is itself influenced by the latest inputs.

• Behavioural genes each produce a controller output, based on the current internal state of the

system.

At any given timestep, information from the environmental inputs is processed simultaneously by

the regulatory and behavioural genes. Behavioural output is therefore a function of current environmental

60 Chapter 4. FGRNs for Control

inputs and of the output of regulatory genes at previous timesteps.

Information from the inputs is only processed on the same timestep by behavioural genes; the out-

put of the regulatory genes only affecting the output of the controller from the next time step onwards.

The role of each of the gene types is further illustrated in Figure 4.1. The internal structure of a sample

FGRN controller is illustrated in Figure 4.2. The FGRN main loop adapted for control is detailed in

Algorithm 4.1 (see Algorithm 3.2 for the developmental equivalent; the same functions, detailed in Sec-

tion 3.1.5 in the previous chapter, are used in both pseudocode listings). Note the use of the behavioural

gene activation state as boolean output, as opposed to the real output value as used in development, as

a binary output is more suitable to the control problems considered, which all use “bang-bang” control.

Algorithm 4.1 contains the following additional functions relating to interactions with the controlled

system:

• getInputs(): get controller inputs from the controlled system.

• setOutputs(outputs): set the controller outputs, which direct the controlled system.

• controlFailure(): return true until the controlled system fails or terminates, then false.

Figure 4.2: Internal view of an example FGRN controller with one input and one output. The genome, a

series of genes (in blue) is shown on the left. A red cross over an element of a gene means that it is not

used in the running of the system. The white to red gradients are protein concentration scalars, and vary

during the running of the system. The protein chemistry operations mask, merge and compare are shown

in yellow, as well as the merging of proteins (cytoplasm), shown on the right. Decay, another chemistry

operation, is shown in red, as it only affects the concentration scalars. For an “input” protein, the shape

of the protein is determined from the fractal shape of an environmental protein (masked by the receptor

promoter protein) but its associated concentration is determined from the external input value.

4.1. Initial system adaptations for control 61

Algorithm 4.1: The FGRN control main loop. Key: AT = affinity threshold, CT = concentration threshold.

{ split the genome into arrays of genes }
declare array environmental genes := getEnvironmentalGenes(genome)
declare array behavioural genes := getBehaviouralGenes(genome)
declare array regulatory genes := getRegulatoryGenes(genome)
declare struct receptor gene := getReceptorGenes(genome)[1]
declare struct input mask := receptor gene.output protein

{ one iteration covers one input−output cycle }
while not controlFailure()

declare array proteins to merge := []

{ integrate inputs as environmental concentrations }
declare array inputs = getInputs()
for i := 1 in inputs.length

if inputs[i] > 0
append(proteins to merge, <mask(environmental genes[i].promoter protein, input mask), inputs[i]>)

end
end

{ decay regulatory gene concentrations, merge into cytoplasm if still present }
for each gene in regulatory genes

decayConcentration(gene)
if gene.concentration > 0

append(proteins to merge, <gene.output protein, gene.concentration>)
end

end

declare struct cytoplasm := merge(proteins to merge)

{ activate regulatory and behavioural genes }
for each gene in regulatory genes, behavioural genes

gene.activated := false
<∆P , c> := compareCytoplasmToPromoter(cytoplasm, gene.promoter protein)
pa := activationProbability(gene.AT, ∆P)
if rand() < pa { stochastic activation }

gene.activated := true
if gene.is regulatory

gene.concentration += regulatoryConcentrationUpdate(gene.CT, c)
end

end
end

declare array outputs := []
for each gene in behavioural genes { extract bang−bang output values }

append(outputs, gene.activated)
end
setOutputs(outputs)

end

62 Chapter 4. FGRNs for Control

4.2 Experiments: pole balancing
As discussed in the literature review, the pole balancing problem is a widely used benchmark control

problem. The details of the pole balancing problem, including equations of motion and the acceptable

parameter range for successful control, are given in the literature review, Section 2.1.2.

The FGRN model’s control ability will be tested on a range of variants of the pole balancing prob-

lem. The mechanical variations are detailed in Figure 4.3. Control will be attempted with both full-state

input, in which both position and velocity of the cart and pole are provided to the controller; and with

partial inputs, the controller being then only provided with the position of the cart and pole(s), and not

their velocities. The activation state of a single behavioural gene will be mapped to the controller output

which belongs to the set {−1.0, 1.0}. The fitness of a controller is the number of timesteps for which it

keeps the pole(s) balanced while keeping the cart within the track’s limits.

The controller inputs with the associated scaling factors used for single pole balancing are shown

in Tables 4.1 and 4.2 for full-state and partial inputs, respectively. Similarly for double pole balancing

the inputs used are shown in Tables 4.3 and 4.4. These scaling factors bring each input into the [−1, 1]

range, the result being then linearly mapped to the [0, 1] concentration range, which is the current range

of input for the FGRN system. The scaling factors were obtained from the maximal possible values for

the positional inputs, and from the maximal values experimentally observed for the velocity inputs.

(a) SPB(0.5m) (b) SPB(1m) (c) SPB(2m)

(d) DPB(1m, 0.1m)

Figure 4.3: Variations of the pole balancing system studied. a) Single pole balancing with half metre

pole: SPB(0.5m). b) Classical single pole balancing one metre pole: SPB(1m). c) Single pole balancing

with two metre pole: SPB(2m). d) Classical double pole balancing with one metre and 10 centimetre

poles: DPB.

4.2. Experiments: pole balancing 63

Table 4.1: The controller inputs for single pole balancing, with full-state inputs (SPB).

Position Value Scaling

1 x 1
2.4

2 ẋ 1
6.0

3 θ 1
12π
180

4 θ̇ 1
6.0

Table 4.2: The controller inputs for single pole balancing, with positions only, no velocity inputs

(SPB(NV)).

Position Value Scaling

1 x 1
2.4

2 θ 1
12π
180

Table 4.3: The controller inputs for double pole balancing, with full-state inputs (DPB).

Position Value Scaling

1 x 1
2.4

2 ẋ 1
6.0

3 θ1
1

36π
180

4 θ̇1
1

6.0

5 θ2
1

36π
180

6 θ̇2
1

24.0

Table 4.4: The controller inputs for double pole balancing, with positions only, no velocity inputs

(DPB(NV)).

Position Value Scaling

1 x 1
2.4

2 θ1
1

36π
180

3 θ2
1

36π
180

64 Chapter 4. FGRNs for Control

4.2.1 Experimental settings

Runge-Kutta fourth order integration, with the usual 0.2s control timestep, and 0.1s simulation timestep

are used, as in Gomez et al.’s work [GSM08]. a maximum of 10,000 fitness evaluations are allowed

per run, and 50 runs are executed. A controller must balance the pole for 100,000 timesteps (≈ 30

minutes) to be considered successful. The fitness of a genome is simply the number of timesteps for

which its associated controller balanced the pole before failure. The usual FGRN GA is used with the

same settings as in Chapter 3. The mutation rate is set to 0.1.

4.2.2 Results

Table 4.5 details the results of the pole balancing experiments with the FGRN genomes evolved by the

FGA. Successful controllers were found in most cases for the full state pole balancing, and in some

cases when given only partial inputs (no velocities). However no successful controller was found for the

double pole problem, even when the full inputs were given to the controllers.

The figures in the following four pages display the performance of the system in each one of fifty

runs, on each of the problems defined above. Each blue line represents the performance improvements

in fitness in one run of the GA, as a function of the number of fitness evaluations so far. The thick red

line represents the median fitness over all runs. The equivalent in terms of GA generations is the number

of evaluations divided by the number of fitness evaluations per generation (a hundred).

Table 4.5: Results for the FGRN model on the pole balancing problems, with FGA search. The first, ‘%’

column gives the percentage out of the fifty runs which produced a successful controller. The next two

main columns, each subdivided into median, mean and standard deviation(SD), give detail of the final

fitness at the end of the runs, and, in case a successful controller is reached, the number of evaluations it

took to reach it. Key: SPB = single pole balancing, DPB = double pole balancing, NV = no velocities.

%
Final fitness Evaluations to success

Median Mean SD Median Mean SD

SPB(0.5m) 94% 100000 94103 23343 2612 3296 2197

SPB(1.0m) 82% 100000 82513 37342 2140 2673 1614

SPB(2.0m) 86% 100000 87147 32195 2206 2607 1392

DPB 0% 80 79 35 - - 0

SPB(0.5m) NV 24% 251 24221 42584 5982 6038 2324

SPB(1.0m) NV 20% 250 21918 39619 5112 4993 2284

SPB(2.0m) NV 22% 253 22229 41303 3720 5109 2407

DPB NV 0% 35 38 7 - - 0

4.2. Experiments: pole balancing 65

Figure 4.4: FGRN model with FGA learning on the single pole balancing problem with 1.0m pole

(SPB(1.0m)). Each blue line represents one of the fifty runs, and the bold red line is the median of these

runs at each point.

Figure 4.5: FGRN model with FGA on the single pole balancing problem with 1.0m pole and no velocity

inputs (SPB(1.0m) NV).

66 Chapter 4. FGRNs for Control

Figure 4.6: FGRN model with FGA on the single pole balancing problem with 0.5m pole (SPB(0.5m)).

Figure 4.7: FGRN model with FGA on the single pole balancing problem with 0.5m pole and no velocity

inputs (SPB(0.5m) NV).

4.2. Experiments: pole balancing 67

Figure 4.8: FGRN model with FGA on the single pole balancing problem with 2.0m pole (SPB(2.0m)).

Figure 4.9: FGRN model with FGA on the single pole balancing problem with 2.0m pole and no velocity

inputs (SPB(2.0m) NV).

68 Chapter 4. FGRNs for Control

Figure 4.10: FGRN model with FGA on the double pole balancing problem (DPB).

Figure 4.11: FGRN model with FGA on the double pole balancing problem with no velocity inputs

(DPB NV).

4.3. Improving reliability with ALPS 69

As can be seen from the graphs, the length of the pole in the single pole problem has little effect on

the results, whereas the absence of velocities make the problem considerably harder. The system did not

come close to finding a solution to the double pole balancing problems, with or without velocities.

4.3 Improving reliability with ALPS
One issue with the performances detailed above is the reliability with which successful solutions are

found across the runs. This is particularly apparent in the single pole balancing with velocity experi-

ments; in some runs a local optimum is reached early on and is improved very little or not at all during

the rest of the run. This corresponds to in Figures 4.4, 4.6, and 4.8, to the thin blue lines that are straight

for most of the run without reaching the successful fitness.

Hornby’s Age-Layered Population Structure (ALPS) paradigm [Hor06] for genetic algorithms

was created to avoid premature convergence, and was shown to be successful on a variety of appli-

cations [Hor09] [PC07]. In this section, a GA implementing the ALPS paradigm will be described,

followed by running the pole balancing experiments above using this GA. The results will then be com-

pared with the previous FGA results; it is hoped the use of ALPS will reduce premature convergence

issues.

4.3.1 ALPS description

The ALPS paradigm aims to preserve diversity in the genetic material by keeping separate populations

in age-segregated layers. Amongst ageing individuals, those with a high fitness filter up to the upper

layers, while those with a lower fitness stay in the lower layers and are eventually replaced by younger

individuals. The population of the first (lowest) layer is regularly (every AgeGap generations) replaced

by randomly generated individuals, allowing a constant inflow of new genetic material. An individual’s

age is only incremented in a generation if it was used as a parent in that generation; the age is then

incremented by one, regardless of the number of offspring produced. The age of individuals which were

not used as parents does not increase.

Each layer has a limit age, fixed by the products of an ageing scheme series and the value of

AgeGap. For example, using an exponential (2n) ageing scheme and an AgeGap value of 10, the limit age

of layer n is 10× 2n generations. If the number of layers is constrained, the uppermost layer has no age

limit. When an individual’s age exceeds the limit of its current layer if the individual is better than the

worst individual of the layer above, it replaces it, otherwise it is discarded. Algorithm 4.2 describes the

workings of ALPS. The functions referenced in the algorithm are the following:

• newRandomLayer() - generate a new layer with LayerSize randomly generated genomes.

• evaluateLayer(layer index) - evaluate the fitness of all the individuals in layer layer index.

• generateOffspringPopulationLayer(layer index) - replace layer layer index by offspring generated from

parents from this layer and the layer immediately below. The offspring are generated by the inner-

layer GA, described below.

70 Chapter 4. FGRNs for Control

Algorithm 4.2: The ALPS algorithm.

declare integer generation := 0
declare struct[] layers := []

{ Initialise first layer }
layers[1] := newRandomIndividuals(LayerSize)
evaluateLayer(1)

{ Run for GenerationCount }
for generation := 1 in GenerationCount

{ generate an offspring population for each layer }
for i := size(layers) downto 1

if i == 1 && generation \% AgeGap == 0
{ reset bottom layer every AgeGap generations }
promoteIndividualsToLayerAbove(1)
layers[1] = newRandomIndividuals(LayerSize)

else
generateOffspringPopulationLayer(i)
evaluateLayer(i)

end
end

{ age all individuals }
for i := 1 in size(layers)

for j := 1 in LayerSize
ageIndividual(layers[i][j])

end

promoteIndividualsToLayerAbove(1)

generation++
end

return layers[size(layers)][1]

• promoteIndividualsToLayerAbove(layer index) - move all individuals which are too old for layer

layer index to the layer above, replacing the worst inferior individuals in the layer above, delete

old individuals which are too old and for which there is no space above. Additional upper layers

are created as needed.

• ageIndividual(individual) - increase the age of individual.

Each layer runs a separate genetic algorithm. The ALPS algorithm allows a large variety of GAs

in that role, provided that the parent population is taken from both the current layer and the layer below.

Here, as in Hornby’s initial ALPS work [Hor06], tournament selection is used. Each one of an offspring’s

two parents is chosen by tournament of size four: four candidate parents are randomly selected from the

population, the fittest one is chosen. An elitism of four is also applied: the four fittest individuals in the

current layers are kept unchanged in the offspring population.

4.3. Improving reliability with ALPS 71

4.3.2 Experiments

The settings for the ALPS GA used here are the following: the AgeGap is set to ten, the layer size

to twenty-five individuals, with a maximum of ten layers. The age limit of each layer is set using a

polynomial layer ageing scheme (1, 2, 4, 9, 16, 25, 36, 49, 64). These parameters where chosen to allow

the maximal expression of ALPS mechanisms within the number of fitness evaluations allowed in a run.

The other experimental settings are identical to those in the pole balancing experiments above.

Table 4.6 shows the results. The use of ALPS is found to improve the reliability with which a

successful solution is found with a low significance (0.5 < p < 0.1) across the problems. In practice

however, the use of ALPS greatly reduced the amount of computation required. This was due to what

happens when FGA converges to a high-fitness, but unsuccessful solution; the population then fills up

with such solutions which require a large amount of processing to evaluate (due to the higher cost of

simulating the pole balancing system for a long time). ALPS’s layered approach restricted such solutions

to its higher layer. Therefore ALPS may still be considered to have been a successful modification to the

system. However there was no improvement on the performances on double pole balancing.

As in the previous section, the plots in the following four pages detail the results of the experiments

on each variation of the pole balancing problem.

Table 4.6: Results for the FGRN model on the pole balancing problems, with ALPS GA search. The

organisation is the same as that of Table 4.5.

%
Final fitness Evaluations to success

Median Mean SD Median Mean SD

SPB(0.5m) 96% 100000 96430 17542 2339 2947 2215

SPB(1.0m) 96% 100000 96801 15677 2247 2955 2277

SPB(2.0m) 96% 100000 98127 10845 3081 3177 2096

DPB 0% 69 69 19 - - 0

SPB(0.5m) NV 28% 3245 32123 43136 6991 6145 2531

SPB(1.0m) NV 14% 264 17216 34437 8822 7973 2037

SPB(2.0m) NV 34% 1497 38408 46815 6155 5551 2276

DPB NV 0% 35 35 3 - - 0

72 Chapter 4. FGRNs for Control

Figure 4.12: FGRN model with ALPS on the single pole balancing problem with 1.0m pole (SPB(1.0m)).

Figure 4.13: FGRN model with ALPS on the single pole balancing problem with 1.0m pole and no

velocity inputs (SPB(1.0m) NV).

4.3. Improving reliability with ALPS 73

Figure 4.14: FGRN model with ALPS on the single pole balancing problem with 0.5m pole (SPB(0.5m)).

Figure 4.15: FGRN model with ALPS on the single pole balancing problem with 0.5m pole and no

velocity inputs (SPB(0.5m) NV).

74 Chapter 4. FGRNs for Control

Figure 4.16: FGRN model with ALPS on the single pole balancing problem with 2.0m pole (SPB(2.0m)).

Figure 4.17: FGRN model with ALPS on the single pole balancing problem with 2.0m pole and no

velocity inputs (SPB(2.0m) NV).

4.3. Improving reliability with ALPS 75

Figure 4.18: FGRN model with ALPS on the double pole balancing problem (DPB).

Figure 4.19: FGRN model with ALPS on the double pole balancing problem with no velocity inputs

(DPB NV).

76 Chapter 4. FGRNs for Control

4.4 Introducing negative input protein concentrations
Negative concentrations are introduced for encoding inputs : the controller’s inputs are here mapped to

the range [−1, 1] instead of [0, 1]. It is hoped the system will be able to take advantage of the sign of

inputs to improve performances. Previous reinforcement learning methods relied on similar partitions

of the input state-space to exploit the sign of input values and successfully balance the pole[BSA83]; it

would be interesting to see whether the FGRN model can similarly exploit the sign of input values. The

concept of negative concentrations is not physically plausible, but their use for inputs does not introduce

inconsistencies within the model. This is a similar leap to the use in the perceptron model of negative

weights. The new range and accordingly modified settings are detailed in Table 4.7.

Table 4.7: Negative input concentration settings for FGRN control. Following Bentley’s work [Ben04b]

the normal protein concentration range is [0, 200], 200 representing saturation. For negative concentra-

tion this range is extended to [−200, 200]. The concentration threshold initialisation range is changed

accordingly.

Setting Original Negative input concentrations

Input range [0, 1] [−1, 1]

Concentration threshold initialisation range [0, 200] [−200, 200]

4.4.1 Experiments

The changes pertaining to negative concentrations are applied cumulatively to the previous change to

using the ALPS GA. The experimental settings are identical to those used with ALPS above.

Table 4.8: Results for the FGRN model with negative protein concentrations and ALPS GA search on

the pole balancing problems. The organisation is the same as that of Table 4.5.

%
Final fitness Evaluations to success

Median Mean SD Median Mean SD

SPB(0.5m) 100% 100000 100000 0 593 756 818

SPB(1.0m) 100% 100000 100000 0 832 957 732

SPB(2.0m) 100% 100000 100000 0 609 676 546

DPB 0% 47 51 12 - - 0

SPB(0.5m) NV 4% 193 4759 19539 8185 8185 1544

SPB(1.0m) NV 10% 222 10448 29866 4766 5368 2353

SPB(2.0m) NV 14% 195 14335 34574 3283 4310 2597

DPB NV 0% 26 27 3 - - 0

The change to using negative concentrations greatly improved the performance of the system on full

state pole balancing of all length; a successful controller was found on every run and the mean number

of evaluations to success on the three pole lengths which previously averaged over 3000 evaluations now

4.4. Introducing negative input protein concentrations 77

averages under 800 evaluations. However the results on single pole balancing without velocities are still

poor, and there is even a small but noticeable decrease in performance. The system still fails completely

on double pole balancing. As in the previous sections, the plots in the following four pages detail the

results of the experiments on each variation of the pole balancing problem.

Extending input concentrations beyond saturation

From the results above alone, it could be argued that the large increase in performance may not be due to

the ability of the system to exploit the negative concentrations, but simply from the increased granularity

provided by the wider input range. To resolve this question, an alternative input range is considered: as

the input range was extended from [0, 1] to [−1, 1] above, the same set of experiments is run extending

the input range [0, 1] to [0, 2]. This leads to environmental protein concentrations superior to saturation

which, though as impossible in real world terms as negative concentrations, are also tolerated by the

FGRN algorithm. However, as for negative concentrations, concentrations above saturation do not prop-

agate throughout the system, i.e. the regulatory concentrations are still kept within the sane [0, 1] range.

The results of these experiments are detailed in Table 4.9.

The system with double input range performs significantly worse on the full state pole balancing

problems than both the original FGRN version and the version allowing negative inputs. Particularly, for

the runs for which it finds solutions, it does so at the expense of several time the number of evaluations

than the system with negative input concentrations. However it also presents significant improvements

on the partial state pole balancing problems compared to both other versions of the FGRN. Each result

comparison above is significant with p < 0.03, conservatively calculated by considering for comparison

a failed run to be equivalent to a 10,000 evaluations long successful run.

Overall, the input range is found to have a significant influence on the performance of the system.

It would be desirable for it to be adaptive, for instance by being subject to evolution; however though

possible this doesn’t fit well within the FGRN model of a single gene data structure for all gene types.

These results also provide a strong argument that the good results obtained on the full state pole balancing

problems using negative input concentrations are the result of the FGRN exploiting particularly the sign

of the inputs, and not only the additional input granularity.

78 Chapter 4. FGRNs for Control

Table 4.9: Results for the FGRN model with a doubled input concentration range and ALPS GA search

on pole balancing problems. The organisation is the same as that of Table 4.5.

%
Final fitness Evaluations to success

Median Mean SD Median Mean SD

SPB(0.5m) 88% 100000 91491 26659 3365 3916 2303

SPB(1.0m) 82% 100000 82936 36511 3660 3540 2072

SPB(2.0m) 68% 100000 69757 44311 3917 4392 2470

DPB 0% 41 47 17 - - 0

SPB(0.5m) NV 44% 36172 50677 46400 5193 5130 2802

SPB(1.0m) NV 54% 100000 58793 46871 5467 5928 2852

SPB(2.0m) NV 66% 100000 68797 45198 5436 5501 2120

DPB NV 0% 33 35 9 - - 0

4.4. Introducing negative input protein concentrations 79

Figure 4.20: FGRN model with negative concentrations on the single pole balancing problem with 1.0m

pole (SPB(1.0m)).

Figure 4.21: FGRN model with negative concentrations on the single pole balancing with 1.0m pole and

no velocity inputs (SPB(1.0m) NV).

80 Chapter 4. FGRNs for Control

Figure 4.22: FGRN model with negative concentrations on the single pole balancing problem with 0.5m

pole (SPB(0.5m)).

Figure 4.23: FGRN model with negative concentrations on the single pole balancing with 0.5m pole and

no velocity inputs (SPB(0.5m) NV).

4.4. Introducing negative input protein concentrations 81

Figure 4.24: FGRN model with negative concentrations on the single pole balancing problem with 2.0m

pole (SPB(2.0m)).

Figure 4.25: FGRN model with negative concentrations on the single pole balancing problem with 2.0m

pole and no velocity inputs (SPB(2.0m) NV).

82 Chapter 4. FGRNs for Control

Figure 4.26: FGRN model with negative concentrations on the double pole balancing problem (DPB).

Figure 4.27: FGRN model with negative concentrations on the double pole balancing problem with no

velocity inputs (DPB NV).

4.5. Behavioural concentration activation check 83

4.5 Behavioural concentration activation check
Looking at the algorithm of the FGRN main loop (see Algorithm 4.1), it can be seen that the activation of

a behavioural gene is a function solely of the gene activation threshold (AT) and of the sum of differences

(∆P) between the cytoplasm and the gene’s promoter protein; the activation of a behavioural gene does

not depend on the current concentrations. Accordingly, successful controllers relied only on the presence

or absence of regulatory proteins emitted into the cytoplasm at previous timesteps to determine the

activation of the behavioural gene. This means the system was unable to rely on inputs from the current

timestep to generate its output.

To allow the behavioural genes to take current input into account when determining output,

a concentration requirement for behavioural gene activation that was included in Bentley’s initial

model [Ben04b] but relaxed in further work [Ben05] will be re-enabled. The only change is in the

algorithm, in the activation section : when the probabilistic activation condition is fulfilled, an addi-

tional condition is added to activation for behavioural genes : the gene is only activated if the mean

concentration c is greater then the gene’s concentration threshold (CT).

This modification is made cumulatively on top of the change to the ALPS GA, and in addition to

the negative input concentrations. All experimental settings are kept the same as in the previous section.

Table 4.10: Results for the FGRN model with negative protein concentration, ALPS GA search, and

behavioural concentration check on the pole balancing problem. The organisation is the same as that of

Table 4.5.

%
Final fitness Evaluations to success

Median Mean SD Median Mean SD

SPB(0.5m) 100% 100000 100000 0 408 559 487

SPB(1.0m) 100% 100000 100000 0 355 438 383

SPB(2.0m) 100% 100000 100000 0 335 502 454

DPB 0% 125 126 17 - - 0

SPB(0.5m) NV 100% 100000 100000 0 1780 1997 1337

SPB(1.0m) NV 100% 100000 100000 0 2059 2396 1561

SPB(2.0m) NV 100% 100000 100000 0 1906 2179 1515

DPB NV 0% 45 46 8 - - 0

The pole balancing experiments were run, and this change greatly improved performance. The

system also found successful controllers in every run of full-state single pole balancing, but was also able

to reliably solve all versions of the partial-state single pole balancing problem with velocities withheld.

Additionally the solution to full-state single pole balancing where found more quickly than without the

check (on average in under 500 evaluations). This improvement to the system did not however make

any difference to the performance on the double pole balancing. As in previous sections, the plots in the

following four pages detail the results of the experiments on each variation of the problem.

84 Chapter 4. FGRNs for Control

Figure 4.28: FGRN model with behavioural CT check on the single pole balancing problem with 1.0m

pole (SPB(1.0m)).

Figure 4.29: FGRN model with behavioural CT check on the single pole balancing problem with 1.0m

pole and no velocity inputs (SPB(1.0m) NV).

4.5. Behavioural concentration activation check 85

Figure 4.30: FGRN model with behavioural CT check on the single pole balancing problem with 0.5m

pole (SPB(0.5m)).

Figure 4.31: FGRN model with behavioural CT check on the single pole balancing problem with 0.5m

pole and no velocity inputs (SPB(0.5m) NV).

86 Chapter 4. FGRNs for Control

Figure 4.32: FGRN model with behavioural CT check on the single pole balancing with 2.0m pole

(SPB(2.0m)).

Figure 4.33: FGRN model with behavioural CT check on the single pole balancing problem with 2.0m

pole and no velocity input (SPB(2.0m) NV).

4.5. Behavioural concentration activation check 87

Figure 4.34: FGRN model with behavioural CT check on the double pole balancing problem (DPB).

Figure 4.35: FGRN model with behavioural CT check on the double pole balancing problem with no

velocity input (DPB NV).

88 Chapter 4. FGRNs for Control

4.6 Performance comparison with a neuroevolution model
Neuroevolution, using evolutionary search methods to evolve the weights and optionally structure of

networks of neurons have been used for the generation of controllers for reinforcement learning problems

such as the pole balancing. A simple recurrent neural network (RNN) model is implemented to provide

reference performances to compare the performances of the FGRN model.

Similarly to the four regulatory and one behavioural genes in the FGRN genomes, the RNN

genomes evolved have five neurons, one of which also act as an output neuron. Each neuron has

w = i + n + 1 weights, where i is the number of inputs, n is the number of neurons, and one extra

weight is added as bias. At each time step, the full input vector shared by all neurons is composed of the

inputs of the controller (e.g. the pole balancing system’s state), the outputs of the neurons at the previous

timestep (set to zero for the initial iteration), and the number one for bias. For each neuron, the scalar

product of the full input vector and the neuron’s weight vector is calculated; the output of the neuron is

then the hyperbolic tangent of the resulting weighted sum.

Weights in the initial genomes are uniformly generated within the range [−1, 1]. When a weight

is mutated a random value uniformly distributed in the range [−0.5, 0.5] is added to the weight. Each

weight of a genome produced by crossover is picked randomly from one of the two parent genomes.

Experiments are run, RNN genomes being evolved via ALPS, with the same settings as in the

previous section. The same scaling of the controller’s input is applied as for FGRN experiments. As

in previous sections, the plots in the following four pages detail the results of the experiments on each

variation of the pole balancing problem.

Table 4.11: Results for RNN on the pole balancing problems, with ALPS GA search. The organisation

is the same as that of Table 4.5.

%
Final fitness Evaluations to success

Median Mean SD Median Mean SD

SPB(0.5m) 100% 100000 100000 0 218 314 296

SPB(1.0m) 100% 100000 100000 0 292 371 258

SPB(2.0m) 100% 100000 100000 0 378 530 487

DPB 12% 300 12728 32279 7180 6516 1986

SPB(0.5m) NV 100% 100000 100000 0 437 592 530

SPB(1.0m) NV 100% 100000 100000 0 481 588 434

SPB(2.0m) NV 100% 100000 100000 0 682 772 621

DPB NV 0% 243 272 159 - - 0

4.6. Performance comparison with a neuroevolution model 89

Figure 4.36: RNN on the single pole balancing problem with 1.0m pole (SPB(1.0m)).

Figure 4.37: RNN on the single pole balancing problem with 1.0m pole and no velocity inputs

(SPB(1.0m) NV).

90 Chapter 4. FGRNs for Control

Figure 4.38: RNN on the single pole balancing problem with 0.5m pole (SPB(0.5m)).

Figure 4.39: RNN on the single pole balancing problem with 0.5m pole and no velocity inputs

(SPB(0.5m) NV).

4.6. Performance comparison with a neuroevolution model 91

Figure 4.40: RNN on the single pole balancing problem with 2.0m pole (SPB(2.0m)).

Figure 4.41: RNN on the single pole balancing with 2.0m pole and no velocity inputs (SPB(2.0m) NV).

92 Chapter 4. FGRNs for Control

Figure 4.42: RNN on the double pole balancing problem (DPB).

Figure 4.43: RNN on the double pole balancing problem with no velocity input (DPB NV).

4.7. Discussion 93

Overall the performance of the RNN model on all versions of single pole balancing was superior to

the best performance obtained so far with the FGRN model. Additionally, some successful controllers

were found for full-state double pole balancing. As mentioned in the literature review, Section 2.1.2,

neuroevolution systems exist that can solve all the versions of the pole balancing studied here; but the

fact that the basic, unoptimised RNN model used here outperformed the FGRN model, not only on

single pole balancing, but also in achieving some success on the double pole is a strong indication

further improvements to the FGRN model are needed.

4.7 Discussion
In this chapter, the adaptations required for the application of the FGRN model were described in detail.

The FGRN model was then successfully applied to the full-state single pole balancing problem (a stan-

dard, well-recognised control benchmark problem), with however initially limited reliability, the system

being only able to find a successful controller in some of the runs. Changing the GA used in the system

from Bentley’s FGA to the ALPS GA led to both an increase in the reliability with which successful

controllers were found, but also to a decrease in the computational costs. A further improvement, allow-

ing negative inputs to be encoded as negative concentrations led to successful controllers being reliably

generated for every run of the full-state single pole balancing problems; the mean number of evaluations

required until a successful controller is found was also significantly reduced. A change in the FGRN

algorithm reduced that number of evaluations further; it also led to complete, reliable success on the

partial-state single pole balancing problems, for which so far the generation of successful controllers

had been very unreliable. However throughout all these improvements, no successful controller was

generated for double pole balancing.

For comparison with neuroevolution, a basic recurrent neural network (RNN) model was imple-

mented and tested on the same pole balancing problems. The RNN model performed better than the

FGRN model on the single pole balancing problems in terms of the number of evaluations required to

find a successful controller, and more importantly was able to solve the full-state double pole balancing

problem on some of the runs. Additionally more sophisticated neuroevolution systems exist that can

reliably solve the double pole balancing problem.

As can be seen in the literature review, Table 2.3 The FGRN model’s performance on single pole

balancing are on a par with other evolutionary methods (including some neuroevolution methods), and

does better than traditional reinforcement learning, value surface based methods. However the complete

failure of the system to generate any successful controller for the double pole balancing problem where

even a basic, unoptimised neuroevolution method shows some success is unsatisfactory.

To improve the FGRN model further, the next chapter will look more deeply into the FGRN

model’s workings, by investigating what has been often put forward as the model’s main speci-

ficity [Ben04b] [Ben09] : the protein encoding process in which fractal proteins are produced from

the genetic protein definition.

Chapter 5

Investigating Protein Encoding

The results obtained in the previous chapter on the pole balancing control problem are interesting, being

one of the first applications of a GRN model to a real control problem, and are a vast improvement on

pure reinforcement learning approaches. But they are still trailing behind other approaches, including

neuroevolution. Some improvements to the FGRN model are needed.

In the FGRN model, each gene contains two protein definitions, respectively encoding a promoter

protein and an output protein. The promoter protein determines the condition under which a gene is

activated. This is a big departure from biology in which there is no equivalent of a promoter protein as

such. In biology that role is mostly taken by the gene’s cis-regulatory region, which does not code for

anything, but interacts directly with regulatory proteins (also known as transcription factors). The output

protein is produced into the cytoplasm on regulatory gene activation.

An FGRN encoding method translates a protein definition in a gene into a greyscale bitmap; e.g.

for fractal proteins, from an < x, y, z > triplet it produces a rectangular greyscale bitmap picture of

a portion of the Mandelbrot fractal. The FGRN model’s chemistry operations (mask, merge, promoter

comparison, detailed in Section 3.1.4) operate on a pixel-by-pixel basis, with no neighbourhood effect.

The chemistry operations can therefore be applied to arbitrary 15 × 15 greyscale bitmaps with pixel

values in the range [0, 127], and not only to the products of fractal sampling. This makes it possible

to test different protein encoding methods while keeping exactly identical all other components of the

system; the ease with which suitable GRNs are found by a genetic algorithm to solve a given problem

(i.e. the evolvability of the model for that given problem) will be shown to be greatly affected by the

encoding. It would be possible to directly define, without encoding, 15 × 15 protein bitmaps within

the genes; but the much bigger size of the resulting genomes would be extremely detrimental to the

performance of the evolutionary search process.

This chapter focuses solely on investigating and improving the protein definition and encoding in

the FGRN model, in terms of expressivity and computational cost. The fractal nature of this component

has often been cited as the source of the evolvability of the system, and was seen as important enough to

name the whole system (it was initially introduced by Bentley as simply “Fractal Proteins” [Ben04b]).

95

Figure 5.1: Fractal protein encoding. The promoter < xp, yp, zp > and output < x, y, z > protein

coordinates define different fractal portions of the Mandelbrot set. Bottom left: a schema describing

the mapping from protein coordinates to fractal portion. b) Top: the fractal portion pointed at by the

output coordinates < x, y, z > of the gene. Bottom: the resulting < 15 × 15 > fractal protein bitmap.

(Reproduction of Figure 3.6 for convenience.)

As a consequence, there has been little work investigating the FGRN system without fractals; Bent-

ley experimented with removing fully the generative protein encoding step, the coordinates < x, y, z >

being then used directly as proteins and promoters by the running system [Ben05], but did not look at

alternative protein encodings. In that work, Bentley found the use of fractal protein encoding improved

the quality of solutions found on the problem of approximating the square root function over a limited

range, compared with the same FGRN system without a generative protein encoding step. Little detail

is however given on the actual workings of the protein-less system. Bentley attributed the difference of

performance to greater evolvability resulting from the higher number of possible interactions between

fractal proteins than between the < x, y, z > coordinates used to generate them, resulting in a system

better able to not get stuck in of local optima [Ben05]. Bentley’s results are a good argument for the use

of a generative protein encoding step in the system, but say comparatively little about the suitability of

fractals as protein encoding; could simpler, more effective, protein encodings exist?

In this chapter, first the fractal protein component (the combination of definition and definition-

to-bitmap) will be discussed, and specific limitations identified. Subsequently two alternative protein

encodings, each mitigating one of these limitations, will be introduced:

• Each protein produced by fractal encoding being a different view of the same fractal, the resulting

fractal proteins are limited in the basic shapes they can take. In order to enlarge the space of

available shapes ‘Mondrian’ proteins are introduced, allowing for the generation of proteins with

multiple solid black areas, and a much wider range of basic shapes than fractal proteins.

• On the basis that fractal proteins under-exploit the greyscale, almost all pixels being either black,

or very close to white, ‘landscape’ proteins are introduced, providing smooth gradients covering

the full greyscale, while still possessing one significant solid black area.

96 Chapter 5. Investigating Protein Encoding

Figure 5.2: The ten pre-evolved fractal proteins used in FGRN random genome initialisation. (Repro-

duction of Figure 3.5 for convenience.)

The performances of these novel protein representations are then compared to those of fractal pro-

teins via computational experiments on the pole balancing, and the generation of activation patterns as

in Section 3.2. A statistical analysis of large random samples of proteins produced by each of the pro-

tein encodings is then provided. A discussion follows as to how to incorporate the identified desirable

characteristics within the same system.

5.1 Critique of fractal protein encoding
As seen in Section 3.1.3, a fractal protein bitmap is generated from a triplet of real coordinates

< x, y, z > : < x, y > defines the centre of the square portion of the fractal portion to sample, and

z is the side of that square portion; the protein bitmap is then generated from the square portion, by sam-

pling at each point of a 15× 15 grid: the result is a 15× 15 greyscale bitmap with integer values in the

range [0, 127] (see Figure 5.1). According to Bentley, the aim of using fractal proteins was to provide the

system with “fractal shapes of infinite complexity” [Ben09]. However, observing the 15× 15 greyscale

bitmaps that are the end product of the generative process of a fractal protein, the large majority of fractal

proteins fit the description of a single black blob on a white background with a thin border of grey. This

can be seen in the ten pre-evolved proteins which form the building blocks of the genomes in the initial

random population in a FGRN run (see Figure 5.2).

From a consideration of the workings of the system, and for evolvability purposes, it is sensible that

the protein bitmap be composed of a number of solid black regions, and of some continuous regions of

other grey values. Black portions are essential for masking with the promoter and receptor proteins, and

having solid colours or gradients in the rest of a protein is desirable so that a small change to a gene’s

protein coordinate or affinity threshold results in a similarly small change in the behaviour of the gene.

However, the limited range of possible general shape the protein bitmaps take is unlikely to be desirable,

as it prevents the emergence of shapes which are composed of more than one solid black area. Mondrian

proteins, introduced below, illustrate a simple kind of general shape unobtainable with fractal proteins

(see Figure 5.4). Such protein bitmaps, used in the role of a promoter protein, would make it possible to

restrict more precisely the area or areas of the cytoplasm used to determine gene activation.

Another limitation of fractal proteins is their narrow use of the greyscale middle range; most parts

of a fractal protein are either black, or almost white (as can be seen in Figure 5.2). A better exploitation

of the greyscale range through gradients in fractal proteins could allow for a smoother mapping between

mutations in the protein definition and the resulting protein. The landscape protein encoding, introduced

in the next section, aims to achieve this.

Regarding the evolvability of fractal proteins, given the mutation range ([−0.5,+0.5]) for the fractal

5.2. Mondrian protein encoding 97

coordinates used in this work and Bentley’s previous work, proteins from mutated fractal coordinates

show little similarity with the proteins obtained from the starting definition, making it unlikely that

fractal encoding provides a significant advantage in terms of evolvability. Preliminary experiments on π

approximation showed decreased performances when attempting to make mutated fractals more similar

to their parent via the use of smaller mutation ranges.

5.2 Mondrian protein encoding
To allow more expressivity in the protein shape than fractal encoding can provide, Mondrian proteins

are introduced, and named for their superficial resemblance to the work of Dutch painter Piet Mondrian

(see Figure 5.3). The aim of Mondrian encoding is to maximise the diversity of proteins produced,

allowing for shapes similar to those obtained with fractal encoding, and providing additional ones, but

also keeping the data size of the definition to a minimum in order to facilitate exploration of the parameter

space.

Figure 5.3: Piet Mondrian’s Composition II in Red, Blue, and Yellow.

Figure 5.4: An example Mondrian protein, created from two merged Mondrian portions. This type of

layout of the black parts is hard to obtain with fractal proteins.

A Mondrian protein is composed of one or several merged Mondrian ‘portions’. A Mondrian por-

tion is a protein sized (15× 15) two-dimensional bitmap divided into three regions, each with a constant

value of grey. The portion bitmap is first split vertically or horizontally into two possibly unequal re-

gions, the resulting sections being each set to different, specified grey values. A black band is then added

perpendicularly, on a side of the bitmap.

A Mondrian portion is defined by the following parameters (each portion being defined in only three

bytes):

• The direction d of the initial split (1 bit), horizontal or vertical.

• The position p of the initial split (4 bits, in [0, 15]).

98 Chapter 5. Investigating Protein Encoding

• Two grey values v1 and v2 (7 bits each, in [0, 127]) defining the grey values of each section.

Figure 5.5: Mondrian portions and proteins. a) The encoding from genetic material to a Mondrian

portion. b) A Mondrian protein can be composed from multiple Mondrian portions, merging them by

applying a maximum or minimum operation at each pixel of the bitmap.

• A ‘black’ parameter pb (5 bits, in [0, 29]) defining both the location of the black band and its width.

For instance, for an horizontal black band, a value n less than or equal to 15 creates a black band

on the first n lines of the portion bitmap, whereas for a value greater than 15 it creates a black

band on the last n− 15 lines of the bitmap.

A Mondrian protein containing more than one portion is generated by taking the maximum or

minimum value at each pixel; this allows the black portion of a Mondrian protein composed of multiple

portions to take a multitude of shapes, some of which are not obtainable via fractal encoding (see for

example the protein in Figure 5.4). Figure 5.5 illustrates the process of generating a Mondrian protein.

The initialisation and mutation ranges for each of a portion’s parameters are shown in Table 5.1; as

for fractal protein definitions, crossover occurs through parameter swapping (each parameter is taken at

random from one of the two parents).

Table 5.1: The full, initialisation, and mutation ranges for the parameters of a Mondrian protein defini-

tion. The initialisation and mutation values are taken from a uniform distribution. Mutated parameters

are then constrained to stay within the ‘full’ range.

Parameter Full Initialisation Mutation

p [0, 15] [0, 15] [−8,+8]

v1, v2 [0, 127] [0, 127] [−64,+64]

pb [0, 29] [0, 29] [−15,+15]

5.3. Landscape protein encoding 99

5.3 Landscape protein encoding
The landscape protein encoding is an even simpler encoding that however aims to create proteins which

take full advantage of the greyscale range available. As discussed at the beginning of this chapter, all

protein chemistry operations in the FGRN model act on a pixel-by-pixel basis, with no neighbourhood

effects. One implication of this is that protein bitmaps can be generated independently to the workings

of a running FGRN system. They can take the form of a 15× 15 two-dimensional bitmap (as is the case

for fractal and Mondrian proteins) or a one-dimensional array of length 225 (= 15 × 15). The latter is

the approach taken with landscape protein encoding.

First, the landscape protein definition sets two positions in the one-dimensional array for which a

‘height’ is given; the height values at all other positions of the array are linearly interpolated to provide

a gradient between the two set positions. A flat valley of height zero (the equivalent of the black part in

fractal and Mondrian proteins) is then carved out around another given position of the array.

Table 5.2: The full, initialisation, and mutation ranges for the parameters of a landscape protein defini-

tion. The initialisation and mutation values are taken from a uniform distribution. Mutated parameters

are then constrained to stay within the ‘full’ range (as in Mondrian proteins).

Parameter Full Initialisation Mutation

p1, p2, pb [0, 224] [0, 224] [−112,+112]

h1, h2, [0, 127] [0, 127] [−64,+64]

wb [0, 224] [0, 157] [−56,+56]

The process of generating a landscape protein from the genome definition is illustrated Figure 5.6.

Specifically, each landscape protein definition is composed of the following parameters, all subject to

mutation:

• Two positions p1 and p2 (8 bits each, in [0, 224]) defining the indices within the one dimensional

array at which the ‘height’ values are set.

• Two height values h1 and h2 (7 bits each, in [0, 127]) defining the ‘height’ value at each of the two

positions.

• The position of the centre of the black area pb (8 bits, in [0, 224]).

• The width of the black area wb (8 bits, in [0, 224]).

As with fractal and Mondrian protein definitions, crossover occurs via parameter swap; the initiali-

sation and mutation ranges for each parameter are shown in Table 5.2.

Figure 5.7 displays examples of landscape proteins. The total size of a landscape protein definition

is less than 6 bytes, equivalent to the size of a two-portion Mondrian portion, to be contrasted with the

total 24 bytes of the three double floating point values which form the definition of a fractal protein.

100 Chapter 5. Investigating Protein Encoding

Figure 5.6: Landscape protein encoding. a) The mapping of the five bytes long genetic material below,

to the resulting landscape protein above. b) The same protein, represented as a two-dimensional bitmap

of same dimension as a fractal or Mondrian protein, for comparison.

Figure 5.7: Landscape protein examples, illustrating the protein construction, the resulting 225 pixel

one-dimensional array, and the corresponding 15 × 15 bitmap. The array to the left shows in each case

the value of the definition parameters; colours match the positions in Figure 5.6.

5.4. Experiments 101

5.4 Experiments
The fractal nature of the protein encoding was presented as the most important part of the FGRN

model [Ben09]. This hypothesis has been challenged in this chapter, by pointing out limitations in

the expressivity and evolvability of the resulting proteins, and introducing alternative encodings which

display greater expressivity in terms of both exploitation of the grey scale and the diversity of shapes

produced; additionally these new encodings do not require the use of pre-evolved protein coordinates to

initialise the genomes of the starting population. In this section, the new protein encodings are tested

against the fractal encoding on control and developmental problems.

The control problems are the standard full state single (with velocities) pole balancing problem

with a one meter pole, and the standard double pole balancing. The FGRN system (note that this is

here defined to not include the protein encoding mechanism) and associated GA are the best performing

in the previous chapter, as described in Section 4.5. Note that the whole FGRN system was optimised

for use with fractal encoding (in relation to the mutation rate and constants in the activation and protein

production functions), which should provide fractal encoding with an advantage. The protein encodings

tested are the fractal, landscape, and Mondrian (with one, two and four portions) encodings.

The developmental problems are the generation of each of the activation patterns specified in Sec-

tion 3.2. Patterns one and two are defined in Figure 3.8 and each require two outputs and therefore two

behavioural genes. Pattern three is defined in Figure 3.9 and requires one output, and therefore one be-

havioural gene. These patterns were used by Bentley for the initial FGRN testing [Ben04b]. The fitness

function used is the opposite of the sum of non-matching activations. These developmental problems do

not require any input, so only one environmental gene is used, with fixed saturation concentration. With

the exception of the double pole balancing, for which no successful controller was found with any of the

systems tested, the results of these experiments are detailed in Table 5.3.

Table 5.3: Results for different protein encodings for the full state single pole balancing problem (SPB)

and the activation pattern problems over fifty runs for each experiment. The two numbers represent the

mean number of evaluations required to obtain a successful solution to the problem, and in parenthesis

the associated standard deviation. If a percentage is included, it describes the proportion of runs which

yielded a successful controller (100% is implied otherwise). Mondrian-N refers to a Mondrian protein

encoding merging N Mondrian portions.

Encoding SPB Pattern 1 Pattern 2 Pattern 3

Fractal 438(383) 3703(3838) 1475(1346) 26% - 12012(4118)

Landscape 326(348) 3663(3948) 1125(1128) 30% - 12782(5123)1

Mondrian-1 431(349) 94% - 5317(3954) 1120(944) 30% - 9754(5123)1

Mondrian-2 534(404) 94% - 6782(4710) 2072(1843) 28% - 9392(4751)

Mondrian-4 980(696) 86% - 8690(4873) 98% - 2343(1986) 16% - 10847(2741)

1The identical standard deviations are purely coincidental.

102 Chapter 5. Investigating Protein Encoding

It can be seen that the use of the landscape protein encoding led to improvements in performance on

every one of the problems tested compared to the same system using fractal protein encoding. Looking

at the overall results the system using landscape protein encoding performed significantly better than

the one using fractal protein encoding (p < 0.03). The results of the system using Mondrian protein

encoding with a single portion were similar to those of the fractal protein encoding alternative, doing

better on some and worst and others.

Using Mondrian encoding with a higher number of portions lead to clear decrease in performance;

this is mostly attributed to the simple minimum (and respectively maximum) pixel-level operations used

to combine multiple portions into one protein which tend to result in proteins that are mostly or even

completely black (respectively mostly non-black). Fully black proteins having no effect on the cyto-

plasm, and fully non-black proteins affecting the whole cytoplasm, they depart from the combination of

a black shape with a clear area characterising most proteins produced by the fractal and landscape pro-

tein encodings, as well as the Mondrian protein encodings with only one or two portions. Additionally

the mutation rate (optimised for the fractal encoding) might be too high for the high number of parame-

ters multi-portion Mondrian protein definitions contain. These issues could be mitigated by combining

portions with more elaborate operators than a single min/max, and reducing the mutation rate. However

the motivation for doing this is not strong since evidence suggests that the simpler landscape protein

encoding should be preferred. It is certainly the case that the system using fractal protein encoding does

not distinguish itself despite the settings being tuned for its use.

5.5 Protein statistical analysis
To analyse the statistical properties of each protein encoding, a hundred thousand proteins were generated

for each protein encoding. The landscape and Mondrian proteins were generated as detailed in their

respective sections above. Fractal proteins used in the FGRN model come from a small set of ten pre-

evolved proteins; here random fractal proteins were generated by uniformly taking the < x, y, z >

coordinates from the space [−2, 1]× [−1, 1]× [−2, 2], aiming to enclose tightly the Mandelbrot set.

For each protein encoding, some statistics are given on the distribution of pixel values in the sample

of randomly generated proteins; issues are identified and possible solutions are given.

5.5.1 Fractal proteins

Studying the aggregate properties of the set of 100,000 randomly generated fractal proteins, it rapidly

appears (see Figure 5.8) that fractal proteins are biased towards extremes, both in terms of pixel values

and in terms of the amount of black pixels per protein. These results illustrate the above critique of

fractal protein encoding in Section 5.1.

5.5. Protein statistical analysis 103

(a) Gradient of pixel values, proportional to the distribution of pixel values in the sample of fractal pro-

teins.

(b) Distribution of the values of non-black pixels in randomly generated fractal proteins.

(c) The proportion of randomly generated fractal proteins containing given numbers of black pixels.

Figure 5.8: Visual statistics of randomly generated fractal proteins.

Figure 5.8a shows a gradient representing the distribution of all pixel values in the randomly gener-

ated fractal proteins; the more a shade of grey is present in proteins, the more it is present in the gradient.

Consequently it is visually clear that on average a fractal protein is approximately composed for one

quarter of black pixels and for three quarters of pixels close to being white; there are few pixels with

intermediate values. This under-exploitation of the greyscale is confirmed by Figure 5.8b, which shows

the distribution of pixels with non-black values, and is heavily biased towards white values. Note that

the spike and subsequent decrease are to be expected, and are side-effects of the variations, within the

space around the Mandelbrot set, of the number of iterations of the Mandelbrot set function after which

a point of that space becomes unbounded and therefore not part of the set.

Additionally Figure 5.8c shows that about 22% of randomly generated proteins do not have one

black pixel, and approximately 4% of proteins are fully black. Beyond the undesirability of fully black

or white proteins (there are small variations amongst white proteins but they are functionally almost

identical), the mapping of a quarter of protein definitions to one of two proteins is not desirable in a

protein encoding process, as it strongly limits the expressivity of the encoding.

104 Chapter 5. Investigating Protein Encoding

A first step towards a solution to these issues may be to map the Cartesian fractal coordinates

< x, y, z > to an ad-hoc non-Cartesian space providing more granularity to the “interesting” portions of

the fractal (the borders), and effectively reducing the occurrence of uninteresting, fully black or white,

proteins. However as there is at this point little reason to believe the fractal protein encoding to be

superior to the landscape protein encoding, this will not be attempted.

5.5.2 Landscape proteins

(a) Gradient of pixel values, proportional to the distribution of pixel values in the sample of landscape

proteins.

(b) Distribution of the values of non-black pixels in randomly generated landscape proteins.

(c) The proportion of randomly generated landscape proteins containing given numbers of black pixels.

Figure 5.9: Visual statistics of randomly generated landscape proteins.

The protein statistics for landscape proteins in Figure 5.9 appear visually smoother than their equiv-

alent for fractal proteins in Figure 5.8, reflecting a better exploitation of the greyscale and a more even

distribution of pixel values used. Particularly, the smooth gradient Figure 5.9a reflects the gradients

present in most landscape proteins, and contrasts heavily with the rougher transition from black to white

for fractal proteins in Figure 5.8. Another illustration of the difference in evenness of distribution of

pixel values is simply the difference in the vertical axis scale between the plots for fractal proteins in

Figure 5.8 and those for landscape proteins in Figure 5.9.

5.5. Protein statistical analysis 105

The semi-circular shape of the distribution of non-black pixel values in Figure 5.9b is also a con-

sequence of the gradients present in landscape proteins: middle values are more likely to be present in

the gradient of two random values. The size of the black area of a randomly generated landscape pro-

tein is uniformly taken from the range [0, 157], which produces proteins with 0 to 70% of black pixels

(0.7 × 15 × 15 ≈ 157), the resulting distribution of generated proteins with a given number of black

pixels is illustrated in Figure 5.9c, where the number of proteins can be seen dropping to zero outside of

the initialisation range [0, 157].

One possible limitation of landscape proteins may be their simplicity, which might make them

unsuitable for problems requiring more complex protein-protein interactions. A solution to this is to

allow the proteins to complexify through mutation by the addition of more than the two current defining

position/value pairs. This can easily be done by first adding a way-point between the two positions with

the gradient value at that point before then mutating this new protein/value pair this would allow protein

complexification while preserving the smooth modification of the end protein shape. The black area can

be similarly split through mutation.

5.5.3 Mondrian proteins

As for fractal and landscape proteins above, Figures 5.10, 5.11, and 5.12 below show statistical proper-

ties of Mondrian proteins with respectively one, two, and four Mondrian portions. Compared to fractal

proteins which are composed on average of a quarter of black pixels, and landscape proteins composed

on average of a third of black pixels, Mondrian proteins are composed on average of fifty percent of

black pixels; such a high proportion of black pixels in the protein may be excessive. This proportion

does not change with the number portions a Mondrian protein is composed of, but instead the distri-

bution of the amount of black pixels per protein changes strongly: as the portion count increases, this

distribution becomes increasingly uneven to the point where most randomly generated Mondrian-4 pro-

teins contain either all black pixels, or no black pixels at all. This progression is obvious looking in turn

at Figures 5.10c, 5.11c, and 5.12c, and is likely the reason for the poorer performances associated with

Mondrian proteins with more portions. This change in distribution is due to the use of only ‘minimum’

and ‘maximum’ operations to combine Mondrian portions into a protein, which excessively favour either

the black proteins (minimum), or the clearest non-black proteins (maximum). The spikes in these plots

are due to the protein length cut used to generate a Mondrian portion’s black part. Consequently the

black pixel count in a Mondrian portion is always a multiple of 15, as is visible for the single portion

protein (Mondrian-1) in Figure 5.10c.

Mondrian proteins do not contain gradients, but as opposed to fractal proteins, every non-black

value is equally likely to be present in the Mondrian portions which compose a Mondrian protein. This

explains the smooth gradients in Figures 5.10a, 5.11a, and 5.12a. Also, as the number of portions per

protein increases, the darker values in the gradient give way to lighter values. This phenomenon is

most visible in the distribution of non-black pixel values for Mondrian-4 (Figure 5.12b, and can also be

explained by the use of the minimum and maximum operations to combine portions.

This analysis of randomly generated Mondrian proteins has revealed defaults in their design which

106 Chapter 5. Investigating Protein Encoding

limit the expressivity of the protein representation. While the Mondrian-1 portion is likely too simple a

protein encoding, the current operations used to combine the Mondrian portions into proteins (minimum

and maximum) produce even poorer proteins. Other methods of combining Mondrian portions, careful

to not emphasize too much extreme pixel values, may produce more complex yet still balanced proteins.

(a) Mondrian protein encoding with one portion (Mondrian-1); left: average protein, right: proportional

gradient of pixel values.

(b) Distribution of the values of non-black pixels in randomly generated one portion Mondrian proteins.

(c) The proportion of randomly generated one portion Mondrian proteins containing given numbers of black

pixels.

Figure 5.10: Visual statistics of randomly generated one portion Mondrian proteins (Mondrian-1).

5.5. Protein statistical analysis 107

(a) Mondrian protein encoding with two portions (Mondrian-2); left: average protein, right: proportional

gradient of pixel values.

(b) Distribution of the values of non-black pixels in randomly generated two portions Mondrian proteins.

(c) The proportion of randomly generated two portions Mondrian proteins containing given numbers of black

pixels.

Figure 5.11: Visual statistics of randomly generated two portions Mondrian proteins (Mondrian-2).

108 Chapter 5. Investigating Protein Encoding

(a) Mondrian protein encoding with four portions (Mondrian-4); left: average protein, right: proportional

gradient of pixel values.

(b) Distribution of the values of non-black pixels in randomly generated four portions Mondrian proteins.

(c) The proportion of randomly generated four portions Mondrian proteins containing given numbers of black

pixels.

Figure 5.12: Visual statistics of randomly generated four portions Mondrian proteins (Mondrian-4).

5.6. Discussion 109

5.6 Discussion

Figure 5.13: Example bitmaps from the three protein encoding methods covered in this chapter. From left

to right: fractal, landscape, and Mondrian proteins. Though they are here represented as two-dimensional

bitmaps, it was shown in this chapter that the two-dimensional aspect is not important in bitmap proteins.

In this chapter, limitations of the fractal protein encoding were identified, and alternative protein

encodings aiming to mitigate these limitations were designed. Figure 5.13 illustrates bitmap proteins

produced by each of the protein encodings studied. The alternative encodings were found to perform

better or similarly to fractal encoding on both a control and developmental problems, validating the

hypothesis that the strength of the FGRN model does not come from the use of fractals.

Particularly, the system using landscape protein encoding was found to perform overall significantly

better (p < 0.03) on these problems than the one using fractal protein encoding, despite the system being

optimised for the latter. A statistical analysis of large samples of randomly generated proteins for each

protein encoding brought additional insights into the causes of the differences in performance between

protein encodings, and showed landscape proteins to be particularly expressive. It was also shown that

landscape protein encoding provides a smooth path for evolutionary complexification of the proteins.

If fractals are not the important component as was previously thought, what is? The main other

feature of the FGRN model is the merging of input and regulatory proteins into a ‘cytoplasm’, which

then determines the further activation of the regulatory and output genes; the addition of a protein to the

cytoplasm can greatly affect this mechanism, which allows the system to radically and discretely switch

its ‘regime’ while running and gives it the ability to select which regime to run in, something which is

not possible using continuous models such as for instance a recurrent neural network. As the main other

specificity of the FGRN model, the author believes this is the most important feature of the model, which

embodies an abstraction of the workings of natural GRNs, instead of the complex protein encoding and

chemistry as previously hypothesised. The next chapter will aim to extract the key mechanisms of the

FGRN model and provide a model embodying these and stripping out unnecessary features. Additional

goals will be to make the new model more easily extensible and more appropriate for real world use.

Chapter 6

The Input-Merge-Regulate-Output (IMRO)

Architecture

The previous chapter investigated the fractal protein encoding, and identified limitations in the expressiv-

ity of the resulting fractal proteins. Alternative encodings were introduced addressing these limitations

leading to improvements in the range of expressivity of the proteins produced, and computational exper-

iments showed improved performances confirming these findings. However the resulting control system

still fell short on the harder double pole balancing problem.

This chapter focuses on the other main feature of the FGRN model : the ability of an FGRN genome

being ‘executed’ to radically change the way it behaves as a function of its current state (the combination

of previously produced regulatory proteins) and the environment (the current inputs). This ability mimics

that of biological cells which can exhibit a wide-variety of behaviours as a function of their environment

and the regulatory proteins (transcription factors) present. Large multi-cellular organisms present the

most striking example of this mechanism, each type of cell (e.g. neuron, skin, muscle) fulfilling a widely

different function while still possessing the same genome.

The FGRN mechanism of merging environmental (input) proteins and regulatory proteins into a

‘cytoplasm’ (merged protein product) that determines further gene activation will be kept, as well as the

general organisation of the genome. The surrounding details of the FGRN model — protein encoding,

gene activation function, protein production and decay functions — will be simplified and wherever

possible will be parameterised to make them more pliable in the evolutionary process.

In the FGRN genome, all genes have the same parameters (promoter and output protein definitions,

affinity and concentration thresholds), which are used differently depending on the gene’s type. This

makes cumbersome any modification of the model requiring the introduction of a new evolvable param-

eter. However, different gene types do share some mechanisms, for instance regulatory and behavioural

genes share a common activation mechanism whereas environmental and regulatory genes both produce

proteins into the merged protein product (cytoplasm). The Input-Merge-Regulate-Output (IMRO) archi-

tecture, an abstraction of the FGRN model’s structure, will be introduced and these shared mechanisms

will be encapsulated in modules with well defined input/output interfaces. The IMRO architecture will

also combine these independent modules into input (environmental), output (behavioural), and regula-

6.1. Architecture description 111

tory genes, and a merging component (cytoplasm); the receptor gene, playing a lesser part in the FGRN

model, is omitted. An IMRO genome will be introduced, composed of evolvable input, output, and reg-

ulatory genes. The merging component (which takes on the same role as the FGRN model’s cytoplasm)

encapsulates the protein merging mechanism and in contrast to the genes has no evolvable parameter.

After presenting the IMRO architecture, an implementation of each module will be introduced,

aiming for each of them to both simplify and make more evolvable each corresponding mechanism of

the FGRN model. The resulting IMRO model (the combination of the IMRO architecture and of the

module implementations) will then be applied to the pole balancing problems, and to a more difficult

version of the acrobot swing-up problem, on which previous attempts using evolutionary methods have

failed [dMSBA08].

6.1 Architecture description

6.1.1 Structure

The structure of the controller and the gene roles in the IMRO architecture are almost identical to those

of a FGRN controller (see Figure 6.1). Figure 6.2 details the data flow of an IMRO controller. An

input gene takes in a scalar input and produces a protein output; it is equivalent to a combination of

the FGRN’s environmental and receptor genes. Both regulatory and output genes take in the cell state,

outputting proteins in the case of the former, and a scalar in the case of the latter. The outputs of the

genes are functions only of their latest input, whereas the merging module stores past proteins until they

have decayed by the mechanism to be described below. Figure 6.3 details the decomposition of genes

into sub-components.

Figure 6.1: FGRN and IMRO controller structures. a) the structure of the FGRN controller, b) the

structure of the IMRO controller. Aside from the different naming conventions, the only difference in

the overall organisation of the controllers is the absence in the IMRO controller of an equivalent to the

FGRN model’s receptor (C) gene, omitted from the IMRO architecture as it plays a minimal role in the

controller.

112 Chapter 6. The Input-Merge-Regulate-Output (IMRO) Architecture

Figure 6.2: The IMRO architecture for GRN control. The data flow of the controller between the input

(I), merging (M), regulatory (R), and output (O) components is also shown. Like an FGRN controller,

an IMRO controller can have multiple input, regulatory, and output genes. Key: P = protein, S = cell

state, R = real scalar

Figure 6.3: The composition of IMRO genes: a) input gene, b) regulatory gene, and c) output gene.

6.1.2 Control loop algorithm

One control iteration of the IMRO controller (in which the controller receives input and gives output)

consists of the following steps: (i) the existing proteins are “aged” (their time to live attribute is decre-

mented by one); (ii) for each scalar input a corresponding input protein is generated and added to the

existing proteins in the merging module; (iii) these proteins are combined into a new cell state by the

merging module; (iv) the cell state determines the activation of the regulatory genes, which output pro-

teins to the merging module, and also the activation of the output genes, which each produce one of the

controller’s scalar outputs; a deactivated output gene produces a zero output. The IMRO control loop is

shown in Algorithm 6.1.

6.1. Architecture description 113

Algorithm 6.1: The IMRO control loop.

declare array input genes := getInputGenes(genome)
declare array output genes := getOutputGenes(genome)
declare array regulatory genes := getRegulatoryGenes(genome)

proteins := []
while not controlEnded()
{ emit proteins for the inputs }
declare array inputs = getInputs()
for i := 1 in inputs.length

append(proteins, protein from value(input gene[i].protein, inputs[i])
end

{ merge proteins into a cell state }
declare struct state := merge(proteins)

{ age proteins, and remove expired ones }
age(proteins)

{ activate regulatory/output genes }
for each gene in regulatory genes, output genes

matching score := match(gene.promoter, state)
activation value := activate(matching score)

gene.activated := false
if activation value > 0

gene.activated := true
if gene.is regulatory

append(proteins, protein output(gene, activation value))
end
if gene.is output

gene.output = scalar output(gene, activation value)
end

end
end

{ extract outputs }
declare array outputs := []
for each gene in output genes

append(outputs, gene.output)
end
setOutputs(outputs)

end

114 Chapter 6. The Input-Merge-Regulate-Output (IMRO) Architecture

6.2 Proteins and cell state merging
The protein bitmaps in the FGRN model are replaced by smaller vectors of fixed size, which is also the

size of the promoter mask vectors and weight vectors, and of the protein output value vectors and mask

vectors. The merging of output proteins in IMRO is identical to the FGRN model’s equivalent merging

of protein bitmaps into the cytoplasm.

In detail, a protein is composed of an array of integers L of length N , a lifespan τ and a real

value v. L is an array of levels, determining how prominently the protein will feature in the cell state; τ

is the protein’s time to live; and v determines how the protein will influence, through the cell state, the

activation of regulatory and output genes. Proteins are decayed by decreasing τ by one; when τ = 0 the

protein is deleted.

The cell state array is generated by taking, for each i inN , the value v of the protein with the highest

level Li for that index (or the average of the v values of the proteins with the maximum level, if several

proteins have the same maximum level); if for the index i there is no existing protein value Li superior

to a fixed threshold set to 0, the corresponding value in the cell state is set to 0. This allows the evolution

of proteins which only influence part of the cell state. This merging process is illustrated in Figure 6.4.

In the initial population of genomes, the protein levels are set to random integer values in the range

[−Lmax, Lmax], where Lmax is constant across genomes. Consequently, each regulatory protein in the

genomes of the initial population affects on average half of the cell state, the portions of the protein with

negative level values being ignored by the running system.

Figure 6.4: The merging of two proteins in the IMRO model. On the left the level arrays which form the

protein definitions are illustrated, the coloured number representing the real value currently associated

with the protein; in the middle, the resulting proteins are shown; on the right the proteins are merged at

every level position, producing the coloured cell state array on top.

6.3. Gene components 115

6.3 Gene components
As detailed in Figure 6.3, the genes are composed of combinations of four components: promoter,

activation, protein-output, and scalar-output. All component parameters are subject to evolution.

6.3.1 Promoter

The role of a natural gene’s promoter section is to regulate the activation of the gene based on the pres-

ence/absence of certain proteins or combinations of proteins. The IMRO gene promoter accomplishes

this regulatory role by masking away part of the merged protein cell state, and then producing a matching

score that is used further on to determine the activation of the gene.

In detail, the IMRO promoter consists of a pair of evolvable arrays of the same size N as the cell

state: a boolean vectorM acting as a mask, and a real vectorW providing weights for the corresponding

values in the cell state. Formally, the matching score mi,t of the promoter of gene i at time step t of a

given simulation (e.g. a pole balancing run) is mi,t =
∑N
j=1Mi,jWi,jSj,t, where Mi,j ∈ {0, 1} is the

jth element of the promoter mask vector of gene i; Wi,j ∈ R is the jth element of the promoter weight

vector of gene i; and Sj,t ∈ R is the jth element of the cell state at time t.

In the initial, randomly generated, population of genomes, the weights are taken uniformly from

the range [−Wmax,Wmax], Wmax being a constant; each value in M is initialised uniformly from the

boolean set 0, 1. Evolutionarily, each component of W is treated as a separate parameter whereas M

is treated as a single parameter. When M is mutated, one of its component is randomly selected to be

inverted.

6.3.2 Gene activation

The gene activation function of IMRO regulatory and output genes is similar to the FGRN’s activation

function, but removes the need for arbitrary constants. The activation function of gene i is defined by its

scale αi and its threshold θi ∈ [−1, 1]. For gene i at time t, the activation ai,t ∈ [0, 1] is given by

ai,t =

max(vi,t,θi)−θi

1−θi if θi ≥ 0

min(vi,t,|θi|)
|θi| if θi < 0

,where vi,t =
tanh(αimi,t)+1

2

This allows for large variety in the direction and scale of the activation function, while preserving

the general shape of its natural equivalent : a 0 or 1 plateau, followed or preceded by a smooth curve

to/from the other end of the [0, 1] range [BGH03]. This function also preserves both the digital aspect of

natural gene activation (a gene can be activated or not), and the analog aspect (once activated, a variable

amount of protein can be produced, depending on the activation level).

In the initial population of genomes, the threshold θ is uniformly taken from the range [−1, 1] and

kept within these bounds; the mutation range is set to half of the initial range, and the resulting mutated

values are clipped back if necessary to stay within [−1, 1]. The scale α is initially taken uniformly from

the range [−αmax, αmax].

116 Chapter 6. The Input-Merge-Regulate-Output (IMRO) Architecture

6.3.3 Protein output

When in a regulatory gene, the protein output component generates a protein on activation (when the

activation value is non null). The component defines the protein’s L level array, as well as its initial

time-to-live τ . The protein’s value v is determined from the combination of a scaling factor β and the

activation value. For gene i at time t, the protein value is vi,t = βiai,t, and similarly when in an input

gene, except an external scalar input then replaces the activation value.

In the initial genome population, the scale β is taken uniformly from the range [−βmax, βmax], and

τ is taken from the range [0, τmax], where τmax is a constant; in keeping with rest of parameters, the

mutation range is half of the initialisation range, in this case [−τmax/4, τmax/4]. In input genes, the

protein output component emits a protein at every time step; to avoid a flooding of the cell state, these

are permanently set with a lifespan τ of one, and their levels are initialised to 0, except for one level

(different for each input) which is initialised to Lmax.

6.3.4 Scalar output

The scalar output component determines the return value of an output gene. Depending on the problem,

a boolean or an output value may be desired; in either case, the component relies on a single parameter

γ ∈ [−1, 1]. For output gene i at time t, the boolean output oi,t is given by

oi,t =

 ai,t ≥ γi if γi ≥ 0

ai,t ≤ −γi if γi < 0

whereas alternatively the real output value ri,t ∈ [0, 1] is given by

ri,t =

 max(ai,t − γi, 0) if γi ≥ 0

−min((ai,t,−γi) + γi) if γi < 0

In the case of bang-zero-bang control, as used in the acrobot problem below, three output genes with

real value output are used, each corresponding to one of the possible control signals. The control signal

for which the corresponding gene outputs the highest value is sent. In the initial genome population, γ

is uniformly taken from the range [−1, 1]. It was found in preliminary experiments that the system is

particularly sensitive to this parameter’s mutation, so a lower mutation range of [−0.1, 0.1] is used here.

6.4. Experiments 117

6.4 Experiments
In this section some relevant parameter settings and experimental details for activation pattern generation,

pole balancing, and the acrobot are first given. The results of these experiments are then detailed.

A maximum of 10,000 genomes are evaluated per run for the pattern generation and pole balancing

experiments. For the acrobot, following the work of da Motta Salles Barreto and Anderson [dMSBA08],

a maximum of 3,000 genomes is evaluated per run. All experiments are run 50 times. 1

IMRO

The IMRO genomes evolved are composed of two regulatory genes, one output gene, and as many input

genes as required by the problem. The size of the cell state N is set to eight. The allocation of more

regulatory genes to FGRN genomes than to IMRO genomes followed preliminary pattern generation

experiments in which FGRN performances were poorer with fewer than four regulatory genes.

Unless previously specified otherwise, the mutation range of each parameter is half that of the ini-

tialisation range, e.g. for the initialisation range [−X,X], the mutation range is [−X/2, X/2]. Mutation

values are taken uniformly from the mutation range.

The sizeN of the cell state is set to 8 to both accommodate the number of inputs for all the problems

studied here, and provide some space for regulatory interactions. The maximum level value Lmax of a

protein is set to 128 (which is the maximum value of a protein in the FGRN system). The maximum

initial lifespan τmax of a regulatory protein is set to 4; the right value for this parameter is very much

problem dependent, the value 4 being a good compromise here between the immediate reactions needed

for control problems, and the longer time scale of some pattern problems. The maximum initial values for

the multiplicative parametersWmax, αmax, and βmax are set to 8, which proved adequate in preliminary

experiments.

Note that except for the size of the cell state, evolution can bring the genome values of these param-

eters outside of these bounds. These constants entirely define both the behaviour of the IMRO system

and the evolutionary behaviour of its parameters.

FGRN

The FGRN genomes evolved use the original fractal protein encoding, and are composed of four regula-

tory genes, one receptor gene, one behavioural (output) gene, and as many environmental genes as there

are inputs. The zero centred input-mapping scheme, with negative protein concentrations introduced in

Section 4.4 is used here. All other FGRN parameters are set as in the previous chapters.

1The source code for all the experiments and systems described in Chapters 4, 5, and 6 is available at

http://github.com/susano/ppsn2012

118 Chapter 6. The Input-Merge-Regulate-Output (IMRO) Architecture

+ + + + +
+ + +++ ++++ ++++

Pattern 1 Pattern 2 Pattern 3

Figure 6.5: Test activation patterns from [Ben04b]. Patterns 1 and 2 require two separate output genes

per genome.

Genetic algorithm

IMRO and FGRN genomes are evolved using the ALPS genetic algorithm [Hor06] with a layer size of

25, an age gap of 10, and the polynomial ageing scheme. Tournament selection is used in each layer,

with a tournament size of 4 and with elitism set to 3. Parents are selected from the top 40% of each

layer, except in one percent of cases, where a parent is selected randomly. The mutation rate is 0.1,

and uniform crossover is always applied. In Section 4.3, ALPS was found to increase the reliability

with which successful FGRN controllers were found. In the FGRN experiments throughout this thesis,

successful solutions rarely had a genome composition different from the initial population’s genomes; it

is therefore likely that these mutations are disproportionally deleterious. For these experiments, genome

level mutations will not be used.

Control problems

The setup of the pole balancing and acrobot problems is detailed in Sections 2.1.2 and 2.1.3. The

controllers are run on the pole balancing problems for 100,000 simulated timesteps (≈ 30 minutes). For

the acrobot, each controller is run for a maximum of 4,000 timesteps; this was necessary instead of

the 1,000 timesteps in da Motta Salles Barreto and Anderson’s work [dMSBA08], to allow the genetic

algorithm to find initial solutions from which to start improving. Though this effectively changes the

problem, it does not directly affect the quality of the final solutions found.

Note that the acrobot problem’s objective is opposite that of the pole balancing problems: whereas

in the latter the system aims to stabilise the system, by maintaining the poles upright, the acrobot is an

underactuated system that must be perturbed out of its stability zone.

Activation pattern generation

The initial test [Ben04b] of the FGRN model’s developmental capabilities was to attempt to evolve

genomes able to produce specific activation patterns (see Figure 6.5), no input was given. The fitness of

a genome was the number of matches between its activation output and the pattern.

While the focus of the IMRO system is control, the ability to generate a variety of activation pat-

terns, independently of any input, can allow the exploration of otherwise closed regions of the space of

possible controllers, and therefore both FGRN and IMRO genomes were applied to this task.

6.4. Experiments 119

Table 6.1: The percentage of successfully generated patterns, and the mean number of evaluations re-

quired to success (standard deviation in parenthesis).

FGRN IMRO

Pattern 1 100% 2434(2271) 100% 225(255)

Pattern 2 100% 1073(1102) 100% 160(119)

Pattern 3 68% 9554(4986) 100% 1168(1142)

6.4.1 Results

Activation pattern generation

The results are impressive: IMRO genomes can be evolved significantly faster (p < 0.001) to produce

the desired pattern than FGRN genomes, and in the case of pattern 3, much more reliably. It should

be noted that the FGRN results on pattern 3, despite being significantly worse than the IMRO results,

are an improvement on Bentley’s initial results for this pattern [Ben04b], where an additional guidance

component needed to be added to the fitness to successfully evolve this pattern. This can be attributed to

the use here of the ALPS genetic algorithm, and to an improvement in the FGRN settings used.

Pole balancing

The results are detailed in Table 6.2. Both FGRN and IMRO genomes were able to evolve successful

controllers at every run for the single pole balancing problem, but only IMRO genomes were able to

evolve the ability to solve the double-pole balancing problem, the most successful FGRN controller

being only able to balance the two poles for 228 timesteps (≈ 5 seconds) out of the required 100,000.

Figure 6.6 and 6.7 illustrate the performances of respectively the IMRO and FGRN systems learning to

solve the single pole balancing problem. Figure 6.8 illustrates the learning of the IMRO system solving

the double pole balancing problem.

Table 6.2: Number of failures/evaluations before a successful controller is found. Note that the earliest

successful solutions for the single pole balancing were found in the first and second generations. Key:

SD = Standard Deviation

FGRN IMRO

Mean(SD) Best Worst Mean(SD) Best Worst

Single Pole 306(303) 35 2005 156(111) 5 589

Double Pole - - - 1677(1261) 245 5719

120 Chapter 6. The Input-Merge-Regulate-Output (IMRO) Architecture

Figure 6.6: The IMRO system learning on the single pole balancing problem (SPB). Each blue line

represents one of the fifty runs, and the bold red line is the median of these runs at each point.

Figure 6.7: FGRN system learning on the single pole balancing problem (SPB)

6.4. Experiments 121

Figure 6.8: IMRO system learning on the double pole balancing problem (DPB)

Table 6.3: Length of the shortest trajectory found to acrobot swing-up, sorted by shortest average trajec-

tory. The results for SARSA-RGD and LSPI are taken from ref [dMSBA08].

Mean(SD) Best Worst

SARSA-RGD 276.6(106.6) 238 -

IMRO 304.3(41.2) 255 497

LSPI 335.9(12.1) 315 343

FGRN 435.7(172.1) 270 1050

Acrobot

Table 6.3 details the results of the IMRO and FGRN systems on the acrobot, as well as those of the

SARSA-RGD system, an online learning method, and of LSPI, a policy iteration method, on the same

problem. The IMRO system performed significantly better than both the FGRN system and LSPI (p <

0.001), finding on average significantly shorter trajectories. But it performed worse than SARSA-RGD,

though SARSA-RGD was less reliable, failing in some of the runs to find any swing-up trajectory.

Figure 6.9 and 6.10 illustrate the performances of respectively the IMRO and FGRN systems in solving

the acrobot problem. Figure 6.11 shows the trajectory of an acrobot controlled by the IMRO system.

122 Chapter 6. The Input-Merge-Regulate-Output (IMRO) Architecture

Figure 6.9: IMRO system learning on the acrobot problem

Figure 6.10: FGRN system learning on the acrobot problem

6.5. Discussion 123

Figure 6.11: An example acrobot swing-up trajectory produced by the IMRO system. Top, the position

of the acrobot at each time step. Bottom, the force applied at each timestep. Long periods of the same

activation, and limited use of the null force action, are typical of efficient swing-up solutions.

6.5 Discussion
In this chapter, the IMRO architecture was introduced, which focuses on the regime-switching feature of

biological GRNs which was also a part of the FGRN model. All other components of the FGRN model

were simplified and made more evolvable where possible. These simplifications resulted in greatly

improved performance on control tasks of a widely different nature: while the pole balancing is a stabil-

isation problem, the acrobot is the exact opposite, requiring the controller to destabilise the system until

it reaches a remote region of the state-space. The IMRO model was also shown to be successful on the

pattern generation problems.

The performance of the FGRN system in the same experiments, and particularly its combined fail-

ure on the double pole balancing problem and in the generation of pattern 3, and its limited success on

the acrobot, hints that it would be inadequate for use on harder control problems. The introduction of

the IMRO architecture also provides further practical advantages over the FGRN model:

Ease of extension

Modularity. The monolithic nature of the FGRN model which depending on a gene’s type uses the

same gene data structure in different ways, makes modification/extension of the model difficult. In

the IMRO architecture, a modular, type-dependent, gene structure was introduced instead, conserving

similar gene roles. The modules internal to these gene structures, with clearly defined interfaces, were

reused across gene types (e.g. regulatory and output genes still share the same activation mechanism).

This allows for the independent, simultaneous, modification of the model’s sub-mechanisms (protein

representation/chemistry, gene activation, system input/output).

Removal of arbitrary constants. The FGRN model also contains multiple arbitrary constants in its

124 Chapter 6. The Input-Merge-Regulate-Output (IMRO) Architecture

mechanisms for activation, protein production, and protein decay. In the IMRO architecture, these mech-

anisms were redesigned, preserving their functionality, but removing the need for arbitrary constants and

wherever possible making these mechanisms subject to evolution.

Real world ease of use

The original FGRN model limited inputs to the [0, 1] range, and even with the introduction in Chapter 4

of negative concentrations extending the range of possible inputs to [−1, 1], having a bounded range of

possible input values as opposed to the full range of real values limits the usefulness of the system on

real world problems. The inputs would therefore need to be normalised to the acceptable range, which

might require, depending on the problem, the use of historical data; the robustness of the system when

faced with extra-ordinary inputs would then be limited by the need to ‘clip’ the input to fit in the range.

In the IMRO architecture, The need for a fixed input range and the associated problems were removed.

While the ability of the FGRN model to provide boolean (based on gene activation), and real (based on

protein concentration) output was preserved.

The complete superiority of the IMRO system’s performance over that of the FGRN system is

encouraging. The next chapter will focus on evaluating the applicability of the IMRO system on multiple,

yet untested, aspects of control; and an attempt will also be made to add to the system the best performing

generative protein encoding from Chapter 5, landscape protein encoding.

Chapter 7

IMRO Applicability

The previous chapter introduced the Input-Merge-Regulate-Output (IMRO) architecture and presented

a simple model implementing it. The resulting system was found to perform significantly better than

the FGRN system on both developmental (pattern generation) and control (the single pole balancing and

acrobot) problems. The system was also able to solve the double pole balancing problem, for which the

FGRN system failed to produce any successful controller.

However, there are still some features displayed by the FGRN model and essential features of a

genetic reinforcement learning control system which the IMRO model has not yet displayed. To fill

these gaps, in this chapter the IMRO model will be showcased on the following issues:

• Generative protein encoding. As opposed to the FGRN system, the simple IMRO system in-

troduced in the previous chapter does not contain a generative protein encoding step. Chapter 5

introduced landscape protein encoding, a generative protein encoding scheme which performed

significantly better than fractal protein encoding on both control and developmental problems.

Bentley found the addition of a generative protein encoding step to the FGRN system increased

the evolvability of the system [Ben05]. In this chapter, the IMRO system will be combined with

the landscape protein encoding in the hope for similar improvements.

• Memory. The ability to generate successful controllers with inputs only partially describing the

state of the system controlled (e.g. the pole balancing without velocity inputs) is an important

feature of the FGRN system. Although the pattern generation developmental tasks required the

IMRO system to keep internal awareness of its position during the task, none of the control tasks

in the previous chapter required it to keep in memory some trace of previous external inputs. To

verify that the IMRO system preserves the FGRN system’s ability to produce successful controllers

in these conditions, it will be tested on the single and double pole balancing problems without

velocity inputs.

• Real valued outputs. Many real-world control applications require real valued outputs, as op-

posed to more constrained output types such as bang-bang and bang-zero-bang, which have been

used so far. The IMRO system had real valued outputs for the bang-zero-bang control of the ac-

robot, the highest of three outputs determining which of the possible overall control system output

126 Chapter 7. IMRO Applicability

{1,−1, 0}was produced at any given timestep; however this only required one output to be greater

than the others, and did not necessitate the precision that can be required of a direct real valued

control signal.

The ability of the IMRO system to produce controllers outputting a real valued control signal

instead of bang-bang or bang-zero-bang will be tested on the single and double pole balancing

problems, with or without velocity inputs.

• Generalisation. This work has focused so far on the speed and reliability of learning: the ability

of the genetic reinforcement learning system to learn a successful control strategy as quickly as

possible, from a set starting point. Another aspect of genetic reinforcement learning focuses on

the ability of the system to learn a more general version of the problem; this is generally done by

varying the initial conditions (e.g. for pole balancing, the position of the cart on the track, and the

angle of the pole), while keeping the problem’s dynamics identical.

A standard generalisation test exists for the single pole balancing problem [WDDA93], and has

been used as a test for different versions of another GRN model [NSB10][MNH+12]. The gener-

alisation test will be applied to IMRO controllers.

• Problem variety. The IMRO system was applied in the last chapter to both developmental and

control problems, but a domain of applicability as wide as possible is desirable, and for complete-

ness the IMRO system will also be applied here to the classical mountain car problem.

In this chapter, first the combination of the IMRO model introduced in Chapter 6 and of the best

performing protein encoding introduced in Chapter 5 will be presented. The resulting system will be ap-

plied side-by-side with the original IMRO system to variations of the pole-balancing problem illustrating

the ability of both systems to keep some knowledge of previous states to improve control. The addition

of landscape proteins to the IMRO system will not be found to bring the improvements hoped for, per-

forming similarly to the original IMRO system on most problems and less reliably on the double pole

balancing. The original IMRO system will then be successfully applied to the real output versions of the

pole balancing, a version of the pole balancing aiming to evaluate the system’s ability to generalise, and

another classical control problem, the mountain car problem.

7.1. Generative encoding and memory 127

7.1 Generative encoding and memory
The IMRO system presented in Chapter 6 uses a direct protein encoding, with a one-to-one mapping

between the components of the protein definition in the genome to the corresponding portions of the

resulting protein used in the system. In contrast, generative protein encodings such as the ones described

in Chapter 5 (including the original fractal protein encoding) are indirect, as each component of a protein

definition in the genome guides a generative process, the outcome of which is the protein corresponding

to that definition. Consequently, the mutation of a single component of the protein definition influences

multiple (sometimes all) aspects of the result protein. This allows the use of bigger and more complex

proteins without needing to expand the search space of genomes, as the protein definitions in the genomes

are kept small compared to the end protein. For the FGRN system, Bentley found the addition of the

generative step to increase the system’s performance on some developmental problems [Ben05].

Landscape protein encoding was the most successful protein encoding in Chapter 5, with which

the FGRN system performed best on a series of developmental and control problems, outperforming

Bentley’s original fractal protein encoding. Landscape protein encoding will be here integrated in the

IMRO system, and the resulting system will be tested on both developmental problems and control

problems and its results compared to those of the IMRO system without this generative protein encoding

step.

Adapting the IMRO system to use landscape proteins

The aim being to test specifically the effects of the addition of generative landscape protein encoding to

the IMRO system, the modular design of IMRO is helpful here by allowing to change the protein output

component while keeping mostly identical the rest of the system’s component.

The IMRO protein output is modified so that the level array is replaced by a landscape protein. The

settings and evolutionary characteristics of the landscape proteins are identical to those used in Chapter 5,

with the small exception that the width of the protein is reduced by one from 225 to 224 (= 8× 28), so

that the size of a protein is a multiple of the number of state required by the IMRO gene promoters. The

landscape proteins are wider than the IMRO protein level array, but are merged using exactly the same

algorithm; the resulting state is then split in 8 equal portions of length 28, the mean of each portion being

taken to form the state presented to the promoters. The abbreviation ‘IMRO(Landscape)’ is used below

to designate the resulting system.

Experiments

The IMRO(Landscape) system is run on all experiments from the previous chapter: the developmental

pattern generation problems, and the pole balancing and acrobot problems. The experimental setup for

all experiments is also identical to that of Chapter 6. The original IMRO results are also shown for

comparison.

Additionally, it should be noted that for the control problems to which the IMRO system has been

applied so far, the full state of the controlled system was given in the inputs at every time step. To

assess the ability of the IMRO system to both keep an internal state ‘memorising’ the current situation

of the controller and to act based on this state, the performance of both versions (with and without

128 Chapter 7. IMRO Applicability

landscape encoding) of the system will additionally be evaluated on the single and double pole balancing

problem without velocity inputs. The removal of these inputs renders incomplete the state presented to

the controller at each time step, forcing in optimal controllers the evolution of mechanisms to internally

store information about previous states. For these additional experiments, the inputs and scaling factors

used are identical to those described in Chapter 4, in Tables 4.2 and 4.4.

On pattern generation experiments, there is no significant difference in performance one way or

the other between the original IMRO system and the IMRO(Landscape) system (See Table 7.1). The

results on the pole balancing problems (See Table 7.2) are more interesting; though there is little dif-

ference in their performance on the single pole balancing problem (with or without velocity inputs),

IMRO(Landscape) performs significantly (p < 0.001) worse on the double pole balancing problem, and

in some runs could not provide a successful controller at all within the number of evaluations imparted.

On the single pole balancing problem without velocities, both versions of IMRO reliably find suc-

cessful controllers with similar performances, but disappointingly neither version of IMRO was able to

produce a successful controller on the double pole balancing problem without velocity inputs.

As for the double pole balancing, the results of IMRO(Landscape) on the acrobot problem (See

Table 7.3) are significantly (p < 0.001) worse than that of the original IMRO, yet still significantly

(p < 0.001) better than the FGRN system’s.

Table 7.1: Results of the IMRO(Landscape) system on the pattern generation experiments: the per-

centage of successfully generated patterns, and the mean number of evaluations required until success

(standard deviation in parenthesis).

IMRO IMRO(Landscape)

Pattern 1 100% 225(255) 100% 143(109)

Pattern 2 100% 160(119) 100% 216(186)

Pattern 3 100% 1168(1142) 100% 1102(958)

Table 7.2: Results of the IMRO(Landscape) system on pole balancing problems: number of controller

evaluations before a successful controller is found. Key: SD = Standard Deviation, NV = No Velocities,

Succ. = success.

IMRO IMRO(landscape)

Succ. Mean(SD) Best Worst % Succ. Mean(SD) Best Worst

Single Pole 100% 156(111) 5 589 100% 143(121) 4 497

Double Pole 100% 1677(1261) 245 5719 92% 3324(1674) 237 7438

Single Pole(NV) 100% 2283(1433) 63 5840 100% 2241(1736) 241 7756

Double Pole(NV) 0% - - - 0% - - -

7.1. Generative encoding and memory 129

Additionally, for each control problem a figure detailing the evolutionary behaviour of

IMRO(Landscape) is given on top in the following pages, with the corresponding figure for the original

IMRO system underneath. Figures 7.1 and 7.2 cover the single pole balancing; Figures 7.3 and 7.4,

the double pole balancing; Figures 7.5 and 7.6, the single pole balancing without velocity inputs; Fig-

ures 7.7 and 7.8, the double pole balancing without velocity inputs; and Figures 7.9 and 7.10, the acrobot

problem.

Conclusion

Both original and landscape versions of the IMRO systems were able to reliably find successful con-

trollers on a control problem which required to keep track of the control system’s state (the single pole

balancing without velocity inputs). However neither was able to generate a successful solution for the

velocity-less version of the harder double pole balancing problem. Given that successful controllers

were found for the full state version of the problem, it seems likely that changes allowing the system

to form more complex cell states from the proteins present would be necessary and may be sufficient

for an IMRO system to be able to generate successful controllers for the double pole balancing problem

without velocity input. An alternative may be to allow the complexification to occur in the promoters

rather than the cell state, which would have similar effects.

The IMRO(Landscape) system’s performance was not significantly distinguishable from the origi-

nal IMRO system’s on most problems. But on the harder double pole balancing and acrobot problems

the IMRO(Landscape) system was found to perform significantly less well than the original IMRO sys-

tem. Consequently there is little reason to keep the more complex Landscape protein encoding, and the

remaining work in this chapter will be based on the simpler original IMRO system.

Table 7.3: Results of the IMRO(Landscape) system on the acrobot problem: the length of the shortest

trajectory found to reach acrobot swing-up. The results for the FGRN and IMRO systems are taken from

the previous chapter. Key: SD = Standard Deviation.

Mean(SD) Best Worst

IMRO 304.3(41.2) 255 497

IMRO(Landscape) 335.8(43.6) 272 442

FGRN 435.7(172.1) 270 1050

130 Chapter 7. IMRO Applicability

Figure 7.1: The IMRO(Landscape) system learning on the single pole balancing problem (SPB). Each

blue line represents one of the fifty runs, and the bold red line is the median of these runs at each point.

Figure 7.2: The IMRO system learning on the single pole balancing problem (SPB).

7.1. Generative encoding and memory 131

Figure 7.3: The IMRO(Landscape) system learning on the double pole balancing problem (DPB).

Figure 7.4: The IMRO system learning on the double pole balancing problem (DPB).

132 Chapter 7. IMRO Applicability

Figure 7.5: The IMRO(Landscape) system learning on the single pole balancing problem without veloc-

ity inputs (SPB(NV)).

Figure 7.6: The IMRO system learning on the single pole balancing problem without velocity inputs

(SPB(NV)).

7.1. Generative encoding and memory 133

Figure 7.7: The IMRO(Landscape) system learning unsuccessfully on the double pole balancing problem

without velocity inputs (DPB(NV)).

Figure 7.8: The IMRO system learning unsuccessfully on the double pole balancing problem without

velocity inputs (DPB(NV)).

134 Chapter 7. IMRO Applicability

Figure 7.9: The IMRO(Landscape) system learning on the acrobot problem.

Figure 7.10: The IMRO system learning on the acrobot problem.

7.2. Real-valued outputs 135

7.2 Real-valued outputs
The control problems studied so far have all required the controller to select from a small set of control

signals ({−1, 1} for all pole balancing problems, {−1, 0, 1} for the acrobot problem). However, many

other control problems require a real-valued control signal; it is therefore an important feature for a

system to be able demonstrate the generation of successful controllers on one of these problems.

The IMRO system presented initially in Chapter 6 already includes a mechanism to produce real

outputs in the range [0, 1], which were used to produce the bang-zero-bang control signals required

for the acrobot problem. For the acrobot problem three real outputs were used (and therefore three

output genes), one for each possible action, and the action chosen was the one for which the real-valued

controller output was the highest.

Here the IMRO system will be applied to the real-valued versions of the pole balancing problems

on which it was tested in the previous section: the single and double pole balancing, with and without

velocity inputs. In the initial randomly generated population of genomes, the IMRO output genes pro-

duce real outputs in the range [0, 1], and this will be linearly mapped to the [−10,+10] range required

by the pole balancing problems; evolution can bring an output gene’s threshold parameter outside its

initial range [−1, 1], which leads to gene outputs outside the range [0, 1]; in these cases the output will be

clipped to fit in [0, 1]. The IMRO system setup used here is exactly the same as in the previous section,

with the exception that the output gene’s threshold parameter is used to generate a real output, not a

boolean one. The other experimental settings, including the search algorithm, are also identical.

The results of the real-valued output of the IMRO system on these problems are shown in Table 7.4;

the corresponding results of the IMRO system with ‘bang-bang’ control from the previous section are

also included for comparison. Additionally, the following two pages show the details of the evolutionary

runs on first the single pole balancing problem with and without velocity inputs (Figures 7.11 and 7.12),

then on the double pole balancing problem (Figures 7.13 and 7.14).

Table 7.4: Results of the IMRO system on pole balancing problems, for bang-bang and real outputs:

number of controller evaluations before a successful controller is found. Key: SD = Standard Deviation,

NV = No Velocities

IMRO - bang-bang IMRO - real output

Mean(SD) Best Worst Mean(SD) Best Worst

Single Pole 156(111) 5 589 266(186) 9 1179

Double Pole 1677(1261) 245 5719 3128(1841) 404 8646

Single Pole(NV) 2283(1433) 63 5840 1746(1262) 55 6520

Double Pole(NV) - - - - - -

136 Chapter 7. IMRO Applicability

Figure 7.11: The IMRO system learning on the single pole balancing (SPB) problem with real control

outputs. Each blue line represents one of the fifty runs, and the bold red line is the median of these runs

at each point.

Figure 7.12: The IMRO system learning on the single pole balancing problem without velocitiy inputs

(SPB(NV)) with real control outputs.

7.2. Real-valued outputs 137

Figure 7.13: The IMRO system learning on the double pole balancing problem (DPB) with real control

outputs.

Figure 7.14: The IMRO system learning on the double pole balancing problem without velocity inputs

(DPB(NV)) with real control outputs.

138 Chapter 7. IMRO Applicability

The number of evaluations required by the IMRO system to find a successful controller for the real

output versions of the full-state single and double pole balancing problems are significantly (p < 0.001)

higher than the number of evaluations required for the ‘bang-bang’ versions of the problem. However

the number of evaluations required to solve the real output version of the single pole balancing problem

without velocity inputs is significantly lower (p < 0.03) than that needed for the ‘bang-bang’ version

of the problem. Additionally, the IMRO system was able to find successful controllers for every run of

these problems within the number of evaluations imparted.

Overall, the IMRO system’s performance does not diverge enough on the bang-bang and real ver-

sions of the pole balancing to justify concerns as to its suitability to real valued output control problems.

The system still fails on the double pole balancing without velocity inputs, further indicating that an

IMRO solution to this problem may require a complexification of some of the components of the current

system.

7.3 Generalisation
The method for evaluating performance on the pole balancing problem in this thesis so far has been to

assess the reliability and speed with which a successful controller is found, evaluating each candidate

controller in identical conditions, which includes starting the cart and pole in the same central and bal-

anced position. This is a common approach [GSM08], but there is another common method of evaluating

performance on the pole balancing problem, introduced by Whitley et al. [WDDA93], which focuses on

the tested system’s ability to generalise. The differences with the methodology employed so far are:

• During learning, each controller evaluation starts with the controlled system in a different ran-

domly generated initial state.

• When a successful controller is found, learning stops and that controller is tested on a large sample

of starting positions. The number of positions from which the controller can keep the pole balanced

is the generalisation score.

This method of evaluation has been used for other GRN models [NSB10][MNH+12], and the same

experimental settings will be used here. For each controller evaluation, a random initial state of the

cart-pole system is generated, each state component being taken uniformly from the following ranges:

• The position of the cart on the track x ∈ [−2.4, 2.4]m.

• The velocity of the cart ẋ ∈ [−1, 1]m/s.

• The angle of the pole to the vertical θ ∈ [−12, 12]◦.

• The angular velocity of the pole θ̇ ∈ [−1.5, 1.5]◦/s.

A controller is considered successful it it balances the pole for 120,000 time steps (as opposed to

100,000 for previous experiments), but evaluations in the generalisation test are only run for at most

1,000 time steps [NSB10]. The sample of initial cart-pole states is generated by combining for each

7.3. Generalisation 139

component a subset of 5 values, giving 625 (= 54) initial states. The subset of each state component is

generated by taking the values at 0.05, 0.275, 0.50, 0.725, and 0.95 of the normalised the range above

associated with that component (e.g. x ∈ {−2.16,−1.08, 0, 1.08, 2.16}). The cart-pole system is impos-

sible to keep balanced from some of these initial states; through exhaustive policy search, Nicolau et al.

found that at least 168 out of these 625 positions cannot possibly be recovered from [NSB10], leaving a

maximum possible generalisation test score of 457.

However, it should be noted that the version of the pole balancing implemented in the work of

Nicolau et al. [NSB10] differs significantly from that used in this work, which is identical to that used in

the work of Gomez et al. [GSM08]: the equations of motion differ (e.g. Nicolau et al.’s do not simulate

friction), and the velocities in the version used by Gomez et al. are not restricted to the ranges above.

This latter point especially makes them very different problems, as it makes the Gomez et al. version

less stable, leading to much faster pole failure; this does not necessarily make it a harder problem, as a

faster failure may lead to quicker learning. A consequence of these differences is that the generalisation

scores obtained below are at times higher than what Nicolau et al. found to be the maximal score with

their pole balancing dynamics; a likely explanation for this is that the bounding of the angular velocity

makes irrecoverable a larger portion of the cart-pole state-space.

Following the change to random initial states (and therefore a now varying fitness for any given

controller), explicit elitism (carrying over the fittest genomes from the previous generation unchanged)

is disabled in the ALPS GA for these experiments; additionally the number of controller evaluations is

not cut off, to provide in all cases a valid comparison between generalisation scores. All other settings

are kept identical to the previous experiments in this chapter, and IMRO’s generalisation abilities are

tested on the single pole balancing with Bang-Bang control with this method.

Experiments are run with this new methodology on the single pole balancing with both bang-bang

and real output control, for both the full state and velocity-less versions of the problem. Table 7.5 displays

the results. Additionally the following two pages detail the evolutionary runs for each experiment, first

the full state version (with bang-bang and real output, see Figures 7.15 and 7.16), then the velocity-less

version of the problem (see Figures 7.17 and 7.18).

140 Chapter 7. IMRO Applicability

Figure 7.15: The IMRO system learning on the single pole balancing (SPB) problem with bang-bang

(BB) control outputs and random state initialisation: controller evaluation starts every time in a different,

random, state.

Figure 7.16: The IMRO system learning on the single pole balancing (SPB) problem with real (R)

control outputs and random state initialisation.

7.3. Generalisation 141

Figure 7.17: The IMRO system learning on the single pole balancing problem without velocity inputs

(SPB(NV)) with bang-bang (BB) control outputs and random state initialisation. Note the large amount

of evaluations required to produce a successful controller in some runs.

Figure 7.18: The IMRO system learning on the single pole balancing problem without velocity inputs

(SPB(NV)) with real (R) control outputs and random state initialisation.

142 Chapter 7. IMRO Applicability

In terms of the number of evaluations needed to find a successful controller, the performance of

IMRO on the full-state version of the problem, with both bang-bang and real control output are each

significantly (p < 0.001) worse than their respective results on the equivalent versions of the problem

with a fixed, balanced and centred, initial cart-pole state. In both cases, the number of evaluations

is approximately doubled which, given the change of fitness function from completely unchanging to

stochastic, is not surprising.

On the other hand, using random initialisation of the cart-pole system’s position and velocity seems

to make the problem much harder when the velocities are withheld from the controller. A possible

explanation is that when the cart-pole is always started balanced in the centre, it is possible for the

controller to deduce to some degree the velocity of both the cart and pole from its own previous actions;

e.g. if the controller pushes the cart to the left as a first action, it can use this as an indication that the

cart’s velocity is negative and the pole velocity is positive. Also controllers can then be evolved implicitly

assuming that the initial velocity is null, whereas here the initial velocity is a complete unknown.

As the dynamics of the controlled systems are different, it would not be valid to infer that the IMRO

system’s performance is superior to Nicolau et al.’s system from these generalisation score. It is however

worth noting that the mean and median generalisation scores of the IMRO system are not worse than

those obtained with any of the tested versions of their system; their most successful system obtaining a

mean generalisation score of 235.68, and a median score of 237 [NSB10].

Interestingly, successful controllers on problem without velocity inputs generalise as well as on

average as the controllers for the full state version of the problem, but show less variation in the gener-

alisation score. As can be seen by comparing the plots in Figures 7.16 (full-state, bang-bang) and 7.17

(no velocity inputs, bang-bang), there are very few partial solutions above 10,000 time steps for the full

state version of the problem, but many for the version with no velocity inputs; an IMRO controller able

to solve the full state version of the problem for 10,000 time steps is therefore very likely to also succeed

on 120,000 time steps. That is not the case on the version of the problem without velocity inputs, for

which many intermediate solutions exist over 10,000 time steps, on which the GA temporarily stabilises.

Table 7.5: Results for the IMRO system on the single pole balancing problem with random initial states,

for bang-bang and real outputs: number of controller evaluations before a successful controller is found,

and generalisation scores. Key: SD = Standard Deviation, NV = No Velocities, BB = Bang-Bang, R =

real.

Evaluations Generalisation

Mean(SD) Med. Worst Best Mean(SD) Med. Worst Best

SPB, BB 341(271) 279 4 1052 247(165) 217 0 553

SPB, R 602(656) 526 55 4218 234(147) 277 1 545

SPB(NV), BB 47778(30257) 45452 2014 131489 237(70) 256 14 344

SPB(NV), R 45386(30809) 38190 2792 146428 239(69) 262 86 360

7.3. Generalisation 143

Beyond lengthening the evolutionary time required to find a successful solution, this also exposes the

population to more of the possible initialisation states which leads to less variation (and therefore more

reliability) in the final generalisation score.

Similarly, the following evolutionary principle can be applied on the full-state version of the prob-

lem to improve the final controllers’ generalisation score: Wagner showed that applying evolutionary

pressure on a population past the point where an optimal solution (i.e. a solution with the maximal fit-

ness score) as been found can increase the robustness against change of the whole population [Wag96].

In effect, the population migrates towards the ‘centre’ of the maximum-fitness area of the search-space

which was reached by the first optimal solution. Pictorially, that maximum-fitness area constitutes a

plateau bordered with cliffs; and change, particularly mutation-based change, constitutes taking a blind

step in a random direction. It therefore makes sense that the genomes further away from the cliffs would

have an evolutionary advantage, their offspring being less likely to fall off, even though their fitness is

identical to that of a genome one step away from the fall.

This phenomenon, coupled with the added exposure to more initial states brought by a longer evo-

lutionary run, should improve the final generalisation score. Experiments are run on the full state version

of the problem, with both bang-bang and real control outputs. All experimental settings are kept identi-

cal, with the difference that the evolutionary process is ran each time for a different, additional number

of evaluations after an optimal solution is found. Table 7.6 details the results.

This approach proves successful in drastically improving the mean and median generalisation score

obtained by the final controller. This is most obvious for the bang-bang version of the problem, for which

both an additional hundred controller evaluations, followed by an additional four hundred on top, both

provide significant improvements (p < 0.01, and p < 0.001 respectively). Significant improvements

can also be seen on the real output version of the problem in which the additional hundred controller

evaluations significantly increase the generalisation score (p < 0.005).

Table 7.6: Generalisation scores of the IMRO system on the single pole balancing (SPB) with application

of additional evolutionary pressure after a controller with optimal fitness is first produced. The leftmost

column shows the number of additional evaluations the GA is run for after a successful controller is

found. Key: SD = Standard Deviation, NV = No Velocities, BB = Bang-Bang, R = real.

SPB, BB SPB, R

Mean(SD) Median Worst Best Mean(SD) Median Worst Best

0 247(165) 217 0 553 234(147) 277 1 545

100 326(135) 346 14 549 313(133) 316 66 538

500 414(126) 459 0 553 330(162) 399 23 550

1000 414(123) 439 0 553 358(151) 386 14 554

144 Chapter 7. IMRO Applicability

However, there is little improvement in the variance; note that the controllers selected to produce

the generalisation scores in Table 7.6 were for each evolutionary run the last controller evaluated with an

optimal fitness. More sophisticated ways of selecting the final genome/controller may improve on this

further; e.g. by making the population of final solutions with optimal fitness collapses/converges to a

single point.

Or, put in the context of the previous cliff/plateau image: in each run, after applying the additional

evolutionary pressure moved population of optimal solutions as a whole away from the cliff, an effec-

tively random member of that population was selected to produce the generalisation score. This random

selection means that the selected individual was sometimes still close to the cliff, as can be seen in the

lack of improvement in the ’Worst’ column of Table 7.6. It might therefore be preferable to take a so-

lution towards the centre of the population, but this is hard to determine and depends on the (unknown)

shape of the plateau; a more robust method may be to still take the last generated optimal individual, but

to make the whole population huddle together first.

This would result in a three stage method: first, evolving a successful solution; second, keep apply-

ing evolutionary pressure for a set number of evaluations; third, make the population of optimal solutions

converge (e.g. by increasing elitism, and/or reducing the mutation rate).

7.4 The mountain car problem
The IMRO system has now been successfully applied to a variety of both developmental (activation

pattern generation) and control (multiple versions of the single and double pole balancing, acrobot)

problems. To further test the IMRO system’s applicability for control, it will here be applied to the

classical mountain car control problem.

The mountain car problem is a standard control task consisting in leading an underpowered car to

the top of a mountain. The car’s engine is not powerful to bring it to the mountain top from a cold start,

so it must take advantage of the opposite slope to build additional momentum (see Figure 7.19). Further

details of the mountain car problem, including the equations of motion, are given in the literature review,

Section 2.1.4.

Figure 7.19: The mountain car problem. The car must reach the greyed area to the right. (Reproduction

of Figure 2.6 for convenience.)

7.4. The mountain car problem 145

Figure 7.20: Plot of the generalisation results of the mountain car IMRO experiments. Each dot repre-

sents one run; the runs for which the dot is on the horizontal grey line on top have a perfect generalisation

score: the run’s final controller successfully lead the car from each of the hundred generalisation starting

position/velocity pairs.

Like the acrobot problem, the mountain car problem requires ‘bang-zero-bang’ control, selecting

at each time step one action from the set {−1, 0, 1}. The same IMRO controller setup will therefore be

used here as for the acrobot in Chapter 6: three real valued outputs are produced by the controller at each

time step, each corresponding to one of the possible actions, and the action with the highest output value

is selected. As per the usual mountain car setup, the position and velocity inputs are normalised to the

range [0, 1].

Experiments are run with the GA settings identical to those of the previous section on pole balancing

generalisation. The IMRO system is tested on the traditional full-state version of the mountain car

problem, therefore five thousand controller evaluations are always run through.

Finding a successful controller in five thousand evaluations on this problem is not hard, as the

starting position and velocity for each controller evaluation is randomly selected and sometimes such

that the car is in a state very close to success. The generalisation performance is most important here.

Table 7.7: Generalisation results of the IMRO system on the classical mountain car problem. ‘Success’ is

for each run the number generalisation position/velocity pairs on which the final controller was success-

ful at the end of the run. The trajectory length rows give the average length of successful generalisation

trajectories. Key: SD = Standard Deviation, NV = No Velocities, BB = Bang-Bang, R = real.

Mean(SD) Median Best Worst

Success (%) 77.2(34.5) 100 100 10

Trajectory length, all runs 67.9(37.0) 75.4 6.1 167.9

Trajectory length, successful runs 87.4(20.8) 94.6 49.9 155.0

146 Chapter 7. IMRO Applicability

Figure 7.21: Map of the percentage of runs producing a successful final controller for each generalisation

position/velocity pair. 65% of the runs produced controllers that were successful on every pair (and

therefore have a perfect generalisation score). Overall it can be seen that starting states with a higher

altitude (situated near the left and right borders of the map), and states with a higher absolute velocity

(situated near the top and bottom borders of the map) are more likely to be solved. Particularly the

states closest to the target position and with a high velocity towards that position are solved by all final

controllers (as illustrated by the full white portion at the bottom right corner of the map).

To obtain a generalisation score, da Motta Salles Barreto and Anderson used the same hundred

randomly generated states for multiple systems, but do not specify these states[dMSBA08]. Here, the

generalisation score will be calculated with a method inspired by that of Whitley et al. [WDDA93] de-

scribed in the previous section: once a successful controller is obtained, the evolutionary run will be

stopped, and the controller will be tested on an array of a hundred position/velocity pairs; the general-

isation score will consist of both the number of pairs for which the controller succeeded (reached the

goal within a thousand time steps), and the number of time steps the controller took to reach the goal for

each pair. The hundred position/velocity pairs are formed by combining two sets of ten values (one set

of positions and one set of velocities). These sets are generated by taking the ten equidistant values in

the normalised range [0.05, 0.95]; the resulting values are shown on the axes in Figures 7.21 and 7.22.

Additionally, an interesting aspect of the performance of the successful controllers will be to their

behaviour from different starting positions; a hundred runs will therefore be executed instead of the fifty

used before, to have enough data to allow for this analysis.

The experiment is run, and successful controllers are found in each run. Table 7.7 details the gener-

7.5. Conclusion 147

Figure 7.22: Map of the mean trajectory length for successful final controllers for each generalisation

position/velocity pair. Similarly to Figure 7.21, the initial states with high absolute velocity and high

altitude are be solved with shorter trajectories.

alisation performance of the final IMRO controllers, which is also further illustrated in Figure 7.20. The

median success score is 100% (see Table 7.7), meaning that in most runs the final controller has a perfect

generalisation score. Due to the difference in generalisation methodology with da Motta Salles Barreto

and Anderson’s work [dMSBA08], it is not possible to compare directly the IMRO results with theirs,

though it is worth noting that the average generalisation trajectory lengths obtained here are much closer

to that obtained with their most successful systems, than their less successful ones. Figures 7.21 and 7.22

provide a more detailed view of the final controllers’ performance as a function of the generalisation ini-

tial position/velocity pairs.

7.5 Conclusion
In this chapter, the IMRO system was first extended to use the best performing generative protein encod-

ing from Chapter 5. The resulting system was evaluated on developmental and control problems; overall

it was not found to improve upon the performance of the original IMRO system. Therefore the rest of

the chapter focused on testing various aspects of the original IMRO system.

The system produced successful controllers for the single pole balancing problem without velocity

inputs, demonstrating its ability of IMRO controllers to operate with only a partial view of the controlled

system’s state. The system’s ability to generate controllers with real valued output was then tested on

the pole balancing problem with real control output; successful controllers were produced for every run

148 Chapter 7. IMRO Applicability

on every version of the problem previously solved by the IMRO system with bang-bang control output,

and the differences in the number of evaluations required to generate a successful controller were small

enough to consider this application a success.

The system’s ability to generalise was tested using an alternative learning and testing methodology

for the single pole balancing problem; despite the controlled system dynamics being the same, this was

effectively a different problem, but the IMRO system was still able to generate successful controllers

for every run, and an evolutionary principle was exploited to subsequently improve the generalisation of

the final controllers. Finally, the system was applied to the classical mountain car control problem; suc-

cessful controllers were found in every run and most of the final controllers had a perfect generalisation

score, finding their way to the target location from every one of the tested generalisation starting states.

Overall, the IMRO system successfully passed every challenge to its applicability. The exception to

this being the double pole balancing without velocity inputs; it is likely that more complex protein/protein

interactions in the production of the cell state will be required to obtain successful IMRO controllers for

this problem.

Also note that, with the exception of the number of input and output genes which vary with the prob-

lem requirements, all other IMRO settings have been kept identical throughout all experiments since its

introduction in Chapter 6. The settings of the genetic algorithm have also been kept identical, with

the single exception of the removal of elitism for problems with a stochastic controller evaluation func-

tion (i.e. the same controller could obtain very different fitnesses in different evaluations). This is an

additional indication of the applicability of this method to other control problems.

Chapter 8

Conclusion

This work started from Bentley’s fractal gene regulatory network (FGRN) model, a complex GRN model

initially conceived for developmental purposes, the main feature of which was the generation of bitmap

proteins from coordinates in the Mandelbrot fractal. This model was tested by further applying it to two

developmental tasks: the generation of an arbitrary activation pattern (the binary representation of π)

and of an algorithm for the calculation of π. The results were impressive, and the FGRN model was

then applied to standard pole balancing problem and variations. Multiple improvements were made to

the control system combining the FGRN and its associated GA, but the resulting system could not solve

the double pole balancing problem.

In an attempt to further improve the FGRN model, the fractal protein encoding mechanism was

studied, and limitations were identified in the expressivity of fractal proteins, leading to the introduction

of simpler alternative protein encodings addressing these limitations. Statistical analyses of large sam-

ples of proteins randomly generated with each protein encoding provided insights into the effects and

desirability of certain protein properties. The alternative encodings were found to perform as well or

better than Bentley’s fractal encoding on both developmental and control problems, but not sufficiently

better to be able to tackle more difficult control problems such as the double pole balancing.

The aim was therefore switched from modifying the protein encoding to extracting the essence of

the FGRN model, and removing any extraneous complexity. In this context it should be noted that the

other defining characteristic of the FGRN model is the merging of the regulatory and environmental

proteins into a single ‘cytoplasm’ which determines further activation of the behavioural and regulatory

genes. Focusing on this feature, and with inspiration from the general organisation and gene roles in the

FGRN, the Input-Merge-Regulate-Output (IMRO) architecture for GRN models was introduced. The

IMRO architecture specifies a modular structure with well-defined inter-module interfaces. This is an

important feature, allowing the independent study and improvement of separate parts of the model. For

instance work to improve protein representation and merging, gene activation, and promoter matching

of the merged protein product can be done simultaneously and independently and be integrated in a final

model.

150 Chapter 8. Conclusion

Simple components implementing each of these functions were introduced and computational ex-

periments showed the resulting model displayed both quantitative and qualitative improvements. Quan-

titatively, the resulting IMRO model performed better than the FGRN model on a large subset of the

problems to which the FGRN model was applied, in terms of both speed of convergence and the relia-

bility with which successful solutions were found. The IMRO model was also qualitatively better in the

sense that successful IMRO controllers were generated for problems for which the generation of FGRN

controllers failed (the double pole balancing problem). Additionally, the first evolutionary solution of

a problem previously intractable by evolutionary methods [dMSBA08] was presented (the hardened ac-

robot swing-up problem with 20Hz control frequency).

Another focus of this thesis has been real-world ease of use and applicability. Usability of the

model was increased by both removing limitations on the input range, and removing arbitrary constants.

Limitations in the input range can be troublesome in real-world use, where input data outside of the

initially expected range can occur, and must then be clipped, essentially ignoring part of the data. The

limitations on input range were first loosened, by allowing negative input concentrations in the FGRN

model, which beyond scaling provided greater influence of inputs within the system; however the FGRN

model inputs stayed limited to a fixed range. This limitation was entirely removed in the final IMRO

model which can accept the full range of real-valued inputs. This is likely a much more robust approach,

able to extrapolate the controller’s behaviour to unexpected data. The arbitrary constants in the FGRN

model (in activation, and protein production/decay) may need to be tuned to fit the particularities of a

problem. In the IMRO model, those constants were removed; instead the activation and protein produc-

tion functions of each gene, as well as protein decay, are now parameterised by evolvable parameters,

allowing evolution to tune them as it searches for a controller.

Applicability of the models to future problems was maximised by minimising the amount of in-

formation given to the controller about the problems studied. The controller was kept ignorant of the

dynamics of the problems, and the fitness functions were kept to their simplest form, being in every case

the sum of reinforcements occurring in a controller evaluation. In fact, a physical implementation of the

learning control system combining the GRN model and GA could literally be a ‘black box’ taking as

only input the state of the controlled system and the reinforcement at each timestep; and a boolean reset

signal on failure/success of the control system (e.g. pole falling down, acrobot having swung-up).

The IMRO model was successfully applied to a large variety of control problems covering a wide

range of goals and operating conditions. Some of the problems studied required a stabilising behaviour

(e.g. pole balancing), and some required oppositely to bring the controlled system to an unstable state.

The model performed well when given only part of the controlled system’s state, was able to produce

both real and discrete control signals, and successful controllers were evolved from control runs with

both fixed and randomised starting conditions.

8.1. Findings of this work 151

8.1 Findings of this work
The following matters were addressed (in chronological order):

• Bentley’s FGRN results on pattern activation and square root function approximation were re-

peated confirming the utility of the FGRN on these simple problems.

• A further demonstration of the FGRN model’s evolvability was given in the approximation of π

as a binary activation pattern and as an algorithm.

• For the developmental problem of generating an approximation of π, it was found that allowing the

outputs of the FGRN system to influence the end phenotype in multiple ways allowed the system

to reach a higher precision.

• The ability of the ALPS paradigm to reduce premature convergence was confirmed with a low

significance in the case of the evolution of FGRN genomes across variations of the pole balancing

problem.

• Negative input concentrations in the FGRN model were introduced and demonstrated to be usable

and to improve performances on some control problems.

• The use of the behavioural activation concentration check mechanism was found to improve

greatly the performance of the FGRN model on multiple variations of the pole balancing prob-

lem.

• Limitations of the fractal protein encoding mechanism were identified.

• Alternative protein encodings were introduced and found to perform as well or better than fractal

protein encoding on all developmental and control problems tested.

• Statistical analyses of large samples of randomly generated proteins were run, explaining some of

the causes for these differences in performance.

• Input-Merge-Regulate-Output (IMRO), a modular architecture for GRN models, was extracted

from the FGRN model, clearly defining the role of each component in the controller and subdivid-

ing genes into reusable modules with well-defined interfaces.

• A simple model implementing the IMRO architecture was presented and tested on both develop-

mental and control problems, displaying quantitative and qualitative improvements over the FGRN

model. The IMRO model succeeded on the double pole balancing problem that the FGRN model

was unable to solve and showed improved performances on all other problems studied.

• The first evolutionary solution to a more difficult version of the acrobot swing up problem was

presented.

• A model combining the IMRO architecture with landscape protein encoding was introduced, but

was not found to perform better than the simpler existing IMRO model.

152 Chapter 8. Conclusion

• The simple IMRO model was applied to multiple variations of the pole balancing problem covering

a wide range of operating conditions: real vs. discrete control signals, full vs. partial state of the

controlled system as input, and fixed vs. randomised starting position.

• A known evolutionary principle was successfully applied to improve the generalisation of IMRO

controllers after maximal fitness is reached.

• The IMRO model was successfully applied to the classical mountain car control problem.

8.2 Future work
The work in this thesis could be expanded in the following ways:

• The simple promoter module implemented for IMRO in Chapter 6 is a combination of a weighted

sum and input-masking. As described by Schilstra and Bolouri [SB02], real cis-regulatory inter-

actions make use of more varied operations than this allows (e.g. sigma-pi operations). The use

of a sigma-pi matrix (allowing the weighted multiplication and summing of inputs) instead of a

weight vector in the promoter would allow for more varied input-input interactions to determine

regulatory and output gene activation. Note that, due to the modular structure of the IMRO archi-

tecture, this change could be effected by a change in only the promoter component. This change,

in combination with IMRO’s regime-switching, would allow the solving of harder control prob-

lems requiring these interactions. An example of such a problem could be the combined acrobot

swing-up plus handstand problem for which no solution exists which does not make extensive

usage of known system dynamics.

• Though this has not so far been necessary, it is possible that adding to the IMRO model the equiva-

lent of FGRN’s receptor gene (a filter which effectively reserves certain areas of the merged protein

product to be used only by regulatory proteins) might also prove useful for problems requiring a

large number of inputs.

• In this work all real mutation values to be added to a mutated parameter were taken from a uni-

form range. Randomly selecting the scale of the mutation first, then the mutation value, as done

by Hornby [Hor09] in conjunction with the use of the ALPS GA, would likely lead to both the

system being able to operate within a larger range of possible parameter values by allowing big-

ger mutations, and to a better ability to fine tune good solutions by making small mutations more

likely. This would improve the system’s ability to deal with new problems.

• The IMRO model performed better than the FGRN model on the simple pattern generation devel-

opmental problem on which it was tested. Given the FGRN was initially created for developmental

purposes, it might be interesting to attempt the application of the IMRO model to more complex

developmental problems. Possible useful modifications of the IMRO system for this purpose might

be the addition of genes producing a constant flux of input proteins with a fixed associated value,

or an input gene constantly adding short-lived proteins with ever-increasing associated values to

the merged protein product to make the system’s behaviour partly a function of time.

8.2. Future work 153

• Nicolau et al. have recently successfully applied a version modified for control of Banzhaf’s artifi-

cial regulatory network (ARN), a GRN model, to algorithmic day-to-day index trading [NOB12],

aiming to maximise profit. It would be interesting to know how the IMRO model performs com-

paratively on this problem. GRN models keep an internal state (the regulatory proteins produced

during previous control timesteps still present in the system) which can greatly affect their output,

and may therefore be particularly well adapted to this task, for which the optimal action to be taken

at any given timestep is highly dependent on the previous state of the market.

• If for a given problem the amount of processing required to control the system is greater than that

allowed by a single iteration of the IMRO system, it would be interesting to make the system run

multiple iterations per control timestep. An obvious way to do this would be to run the system for a

fixed number of iterations, and take as system output either the last outputs, or a combination (e.g.

mean) of the outputs throughout the iterations, depending on the problem. A possible extension

would be to additionally allow the system to stop before this maximum number of iterations is

reached, by monitoring the fulfilment of a given condition (e.g. that an output value is above

a specific threshold). This would appear promising in that it would make it possible for both

evolution, and the running GRN, to have some control over the number of iterations run.

• In some control problems, a controller evaluation can be expensive. Boone’s approach, described

in Section 2.1.3 under ’Lookahead search’, trades in additional computational costs for faster

learning in terms of the number of controller evaluations required [Boo97a]. It consists in the

addition of a model of the environment learning concurrently with the controllers; the model

is refined at every control time step, and is used as a simulated environment to generate a new

controller which determines the next action. Applied naively to the IMRO system, this means

running a full genetic algorithm search at every time step, with the model acting as environment in

the fitness evaluation of the candidate controllers. This would be incur high computational costs,

but significant optimisations are possible to this naive approach: e.g. using the controllers found in

the previous time steps to seed the population in the following time step, or only generating a new

controller when the difference between the observed and simulated behaviour of the environment

(as observed through the controller inputs) is higher than a fixed threshold.

In particular, this approach may be interesting for emergency cases where fast learning of new

conditions is essential. For instance when the controlled system has somehow been damaged to

the point where the previously known dynamics are not valid any more, but it is important to

quickly learn the new system dynamics and avoid failure.

154 Chapter 8. Conclusion

• Chapter 7 applied an evolutionary method to IMRO which allowed to increase the generalisation

score of the final controller by evolving controllers past the point where the maximum fitness was

reached, This could be improved further by progressively converging the whole population to one

of the maximal fitness controllers during this additional evolution period. This should ensure the

selection of a final controller in a region of the fitness landscape with high overall fitness, and

make it even more likely that the selected final controller generalises well.

The path of transforming our understanding of biological systems into models applicable to engi-

neering problems is hard. The identification of the fundamental principles governing the workings of

biological systems is strewn with difficulties, which range from over-simplification — discarding the

very things we want to model — to misidentifying as essential what are only artefacts of the limitations

of the biological implementation of these principles on a physical substrate. Faced with these difficulties,

it has been argued we should let go of keeping full understanding of our models, and add blindly from

biology what we hope to be useful features, to the point where faced with biological mechanisms we

cannot reproduce, we sometimes introduce elements of complexity we do not fully grasp.

It has been the guiding principle of this thesis that we should not let go, but instead focus on

implementing essential principles in a manner that still allows us to retain the ability to fully understand

and to extend our models. We should be masters of our models, as this is the only way we can reasonably

hope to keep on improving them and successfully integrate new features from the vast array of marvellous

mechanisms Nature’s ingenuity as blessed us with.

Appendix A

Algorithms details

A.1 Fgrn GA

Algorithm A.1: FGA: generating the initial random population.

procedure array newRandomPopulation(PopulationSize)
declare array population := array(PopulationSize)

for i := 1 in PopulationSize
population[i] := randomGenome()

end

return population
end

Algorithm A.2: FGA: picking one of the two parent genomes needed to generate a child genome.

procedure genome pickParentGenome(population)
declare integer index

if rand() < RandomParentCoefficient
index := randomInteger(PopulationSize)

else
index := randomInteger(ParentCoefficient ∗ PopulationSize)

end

return population[index]
end

156 Appendix A. Algorithms details

Algorithm A.3: FGA: ageing all genomes in the population and removing the expired ones.

procedure void ageAndRemoveExpired(population)
declare array aged population
declare genome a genome

for i := 1 in PopulationSize
a genome := population[i]
inc a genome.age
if a genome.age < MaximumAge

append(aged population, a genome)
end

end

population := aged population
end

Bibliography

[BA99] A.L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,

286(5439):509–512, 1999.

[Ban03a] W. Banzhaf. Artificial regulatory networks and genetic programming. Genetic Program-

ming Theory and Practice, pages 43–62, 2003.

[Ban03b] W. Banzhaf. On the Dynamics of an Artificial Regulatory Network. In Advances in

Artificial Life: 7th European Conference (ECAL-2003), volume 2801 of Lecture Notes in

Computer Science (LNCS). Springer, 2003.

[Ben96] P.J. Bentley. Generic Evolutionary Design of Solid Objects using a Genetic Algorithm.

PhD thesis, University of Huddersfield, 1996.

[Ben03a] P.J. Bentley. Evolving Fractal Gene Regulatory Networks for Robot Control. In Advances

in Artificial Life: European Conference on Artificial Life (ECAL 2003), volume 2801 of

Lecture Notes in Computer Science (LNCS), pages 753–762. Springer, 2003.

[Ben03b] P.J. Bentley. Evolving Fractal Proteins. In International Conference on Evolvable Sys-

tems: From Biology to Hardware (ICES 2003), volume 2606 of Lecture Notes in Com-

puter Science (LNCS), pages 81–92. Springer, 2003.

[Ben04a] P.J. Bentley. Evolving beyond perfection: an investigation of the effects of long-term

evolution on fractal gene regulatory networks. Biosystems, 76(1-3):291–301, 2004.

[Ben04b] P.J. Bentley. Fractal Proteins. Genetic Programming and Evolvable Machines, 5:71–101,

2004.

[Ben05] P.J. Bentley. Evolving Fractal Gene Regulatory Networks for Graceful Degradation of

Software. In Self-* Properties in Complex Information Systems, volume 3460 of Lecture

Notes in Computer Science (LNCS), pages 21–35. Springer, 2005.

[Ben09] P.J. Bentley. Methods for improving simulations of biological systems: systemic compu-

tation and fractal proteins. Journal of The Royal Society Interface, 6(Suppl 4):S451–S466,

2009.

[BGH03] N.E. Buchler, U. Gerland, and T. Hwa. On schemes of combinatorial transcription logic.

Proceedings of the National Academy of Sciences of the USA, 100(9):51365141, 2003.

158 Bibliography

[BJ03] E. Ben-Jacob. Bacterial self-organization: co-enhancement of complexification and

adaptability in a dynamic environment. Philosophical Transactions: Mathematical, Phys-

ical and Engineering Sciences, 361(1807):1283–1312, 2003.

[BLA+04] M.M. Babu, N.M. Luscombe, L. Aravind, M. Gerstein, and S.A. Teichmann. Structure

and evolution of transcriptional regulatory networks. Current Opinion in Structural Biol-

ogy, 14(3):283–291, 2004.

[BO04] A.L. Barabási and Z.N. Oltvai. Network biology: understanding the cell’s functional

organization. Nature Reviews Genetics, 5(2):101–113, 2004.

[Bon02] J.C. Bongard. Evolving modular genetic regulatory networks. In Congress on Evolution-

ary Computation (CEC 2002), volume 2, pages 1872–1877. IEEE, 2002.

[Boo97a] G. Boone. Efficient reinforcement learning: Model-based acrobot control. In Interna-

tional Conference on Robotics and Automation (ICRA 1997), volume 1, pages 229–234.

IEEE, 1997.

[Boo97b] G. Boone. Minimum-time control of the acrobot. In International Conference on Robotics

and Automation (ICRA 1997), volume 4, pages 3281–3287. IEEE, 1997.

[BP97] S.C. Brown and K.M. Passino. Intelligent control for an acrobot. Journal of Intelligent

and Robotic Systems, 18(3):209–248, 1997.

[BSA83] A.G. Barto, R.S. Sutton, and C.W. Anderson. Neuronlike Adaptive Elements That Can

Solve Difficult Learning Control Problems. Transactions on Systems, Man, and Cyber-

netics, 13(5):834–846, 1983.

[CSSM89] A. Cleeremans, D. Servan-Schreiber, and J.L. McClelland. Finite state automata and

simple recurrent networks. Neural Computation, 1(3):372–381, 1989.

[CW03] G.C. Conant and A. Wagner. Convergent evolution of gene circuits. Nature genetics,

34(3):264–266, 2003.

[Dav06] E.H. Davidson. The regulatory genome: gene regulatory networks in development and

evolution. Academic Press, 2006.

[DKUY08] S.C. Duong, H. Kinjo, E. Uezato, and T. Yamamoto. A switch controller design for

the acrobot using neural network and genetic algorithm. In International Conference

on Control, Automation, Robotics and Vision (ICARCV 2008), pages 1540–1544. IEEE,

2008.

[DMF06] P. Dürr, C. Mattiussi, and D. Floreano. Neuroevolution with Analog Genetic Encoding.

In Parallel Problem Solving from Nature (PPSN IX), volume 4193 of Lecture Notes in

Computer Science (LNCS), pages 671–680. Springer, 2006.

Bibliography 159

[dMSBA08] A. da Motta Salles Barreto and C.W. Anderson. Restricted gradient-descent algorithm for

value-function approximation in reinforcement learning. Artificial Intelligence, 172(4-

5):454–482, 2008.

[DRO+02] E.H. Davidson, J.P. Rast, P. Oliveri, A. Ransick, C. Calestani, C.H. Yuh, T. Minokawa,

G. Amore, V. Hinman, C. Arenas-Mena, et al. A genomic regulatory network for devel-

opment. Science, 295(5560):1669–1678, 2002.

[ED99] P. Eggenberger and R. Dravid. An evolutionary approach to pattern formation mecha-

nisms on lepidopteran wings. In Congress on Evolutionary Computation (CEC 1999),

volume 1, pages 470–473. IEEE, 1999.

[ED09] D.H. Erwin and E.H. Davidson. The evolution of hierarchical gene regulatory networks.

Nature Reviews Genetics, 10(2):141–148, 2009.

[Egg97] P. Eggenberger. Creation of neural networks based on developmental and evolutionary

principles. In International Conference on Artificial Neural Networks (ICANN 1997),

volume 1327 of Lecture Notes in Computer Science (LNCS), pages 337–342. Springer,

1997.

[Egg01] P. Eggenberger. Axonal growth in evolutionary neurogenesis. Artificial Life and Robotics,

5(3):137–141, 2001.

[EH03] P. Eggenberger Hotz. Genome-physics interaction as a new concept to reduce the number

of genetic parameters in artificial evolution. In Congress on Evolutionary Computation

(CEC 2003), volume 1, pages 191–198. IEEE, 2003.

[EH04a] P. Eggenberger Hotz. Asymmetric cell division in artificial evolution. In Congress on

Evolutionary Computation (CEC 2004), volume 2, pages 2180–2186. IEEE, 2004.

[EH04b] P. Eggenberger Hotz. Comparing direct and developmental encoding schemes in artificial

evolution: A case study in evolving lens shapes. In Congress on Evolutionary Computa-

tion (CEC 2003), volume 1, pages 752–757. IEEE, 2004.

[EL03] E. Eisenberg and E.Y. Levanon. Preferential attachment in the protein network evolution.

Physical Review Letters, 91(13):138701, 2003.

[FSS+11] J. Funkquist, V. Stephan, E. Schaffernicht, C. Rosner, and M. Berg. SOFCOM-Self-

optimising strategy for control of the combustion process. VGB PowerTech, 3:48–54,

2011.

[GM03] F.J. Gomez and R. Miikkulainen. Active guidance for a finless rocket using neuroevo-

lution. In Genetic and Evolutionary Computation Conference (GECCO 2003), volume

2724 of Lecture Notes in Computer Science (LNCS), pages 2084–2095. Springer, 2003.

160 Bibliography

[GSM08] F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated Neural Evolution through

Cooperatively Coevolved Synapses. The Journal of Machine Learning Research, 9:937–

965, 2008.

[GW03] N.L. Geard and J. Wiles. A gene regulatory network for cell differentiation in Caenorhab-

ditis elegans. In First Australian Conference on Artificial Life, pages 86–100. University

of New South Wales, 2003.

[HJ05] J. Hallinan and P. Jackway. Network motifs, feedback loops and the dynamics of genetic

regulatory networks. In Computational Intelligence in Bioinformatics and Computational

Biology (CIBCB 2005), pages 1–7. IEEE, 2005.

[Hor06] G.S. Hornby. ALPS: The Age-Layered Population Structure for Reducing the Problem

of Premature Convergence. In Proceedings of the 8th annual conference on Genetic and

Evolutionary Computation (GECCO 2006), pages 815–822. ACM, 2006.

[Hor09] G.S. Hornby. Steady-state ALPS for real-valued problems. In Proceedings of the 11th An-

nual conference on Genetic and Evolutionary Computation (GECCO 2009), pages 795–

802. ACM, 2009.

[HW04a] J. Hallinan and J. Wiles. Asynchronous dynamics of an artificial genetic regulatory net-

work. In Artificial life IX: Proceedings of the Ninth International Conference on the

Simulation and Synthesis of Artificial Life, pages 399–403. MIT Press, 2004.

[HW04b] J. Hallinan and J. Wiles. Evolving genetic regulatory networks using an artificial genome.

In Second Conference on Asia-Pacific Bioinformatics (APBC 2004), volume 29, pages

291–296. Australian Computer Society, 2004.

[Ige03] C. Igel. Neuroevolution for reinforcement learning using evolution strategies. In Congress

on Evolutionary Computation (CEC 2003), volume 4, pages 2588–2595. IEEE, 2003.

[Jak95] N. Jakobi. Harnessing Morphogenesis. Technical Report 423, School of Cognitive and

Computing Sciences, University of Sussex, 1995.

[JW10] M. Joachimczak and B. Wróbel. Evolving gene regulatory networks for real time con-

trol of foraging behaviours. In Artificial Life XII : Proceedings of the Twelfth Interna-

tional Conference on the Simulation and Synthesis of Living Systems, pages 348–355.

MIT Press, 2010.

[Kau69] S.A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets.

Journal of Theoretical Biology, 22(3):437–467, 1969.

[Kau93] S.A. Kauffman. The Origins of Order. Oxford University Press, 1993.

Bibliography 161

[KB03] S. Kumar and P.J. Bentley. Biologically Inspired Evolutionary Development. In Interna-

tional Conference on Evolvable Systems: From Biology to Hardware (ICES 2003), vol-

ume 2606 of Lecture Notes in Computer Science (LNCS), pages 57–68. Springer, 2003.

[KB04] P.D. Kuo and W. Banzhaf. Small World and Scale–Free Network Topologies in an Arti-

ficial Regulatory Network Model. In Artificial life IX: proceedings of the Ninth Interna-

tional Conference on the Simulation and Synthesis of Artificial Life, pages 404–409. The

MIT Press, 2004.

[KFOY05] K. Kawada, S. Fujisawa, M. Obika, and T. Yamamoto. Creating swing-up patterns of an

acrobot using evolutionary computation. In Computational Intelligence in Robotics and

Automation (CIRA 2005), pages 261–266. IEEE, 2005.

[KLB04] P.D. Kuo, A. Leier, and W. Banzhaf. Evolving dynamics in an artificial regulatory network

model. In Parallel Problem Solving from Nature (PPSN VIII), volume 3242 of Lecture

Notes in Computer Science (LNCS), pages 571–580. Springer, 2004.

[KNS06] J.F. Knabe, C.L. Nehaniv, and M.J. Schilstra. Evolutionary robustness of differentiation in

genetic regulatory networks. In Explorations in the Complexity of Possible Life; Proceed-

ings of the 7th German Workshop on Artificial Life (GWAL7), pages 75–84. IOS Press,

2006.

[KNSQ06] J.F. Knabe, C.L. Nehaniv, M.J. Schilstra, and T. Quick. Evolving Biological Clocks using

Genetic Regulatory Networks. In Artificial life X: proceedings of the Tenth International

Conference on the Simulation and Synthesis of Living Systems, volume 10, pages 15–21.

MIT Press, 2006.

[KSN08] J.F. Knabe, M.J. Schilstra, and C. Nehaniv. Evolution and Morphogenesis of Differen-

tiated Multicellular Organisms: Autonomously Generated Diffusion Gradients for Posi-

tional Information. In Artificial Life XI, volume 11, pages 321–328. MIT Press, 2008.

[Kum05] S. Kumar. A Developmental Genetics-Inspired Approach to Robot Control. In Proceed-

ings of the 2005 workshops on Genetic and Evolutionary Computation (GECCO 2005),

pages 304–309. ACM, 2005.

[LC11] R. Lopes and E. Costa. ReNCoDe: a regulatory network computational device. In Genetic

Programming, volume 7491 of Lecture Notes in Computer Science (LNCS), pages 142–

153. Springer, 2011.

[Lin68a] A. Lindenmayer. Mathematical models for cellular interactions in development I. Fila-

ments with one-sided inputs. Journal of Theoretical Biology, 18(3):280–299, 1968.

[Lin68b] A. Lindenmayer. Mathematical models for cellular interactions in development II. Simple

and branching filaments with two-sided inputs. Journal of theoretical biology, 18(3):300–

315, 1968.

162 Bibliography

[LKB07] A.E. Leier, P.D. Kuo, and W. Banzhaf. Analysis of preferential network motif generation

in an artificial regulatory network model created by duplication and divergence. Advances

in Complex Systems, 10(2):155–172, 2007.

[LP03] M.G. Lagoudakis and R. Parr. Least-squares policy iteration. The Journal of Machine

Learning Research, 4:1107–1149, 2003.

[Mat05] C. Mattiussi. Evolutionary Synthesis of Analog Networks. PhD thesis, cole Polytechnique

Fdrale de Lausanne (EPFL), 2005.

[MEKK08] J.H. Metzen, M. Edgington, Y. Kassahun, and F. Kirchner. Evolving Neural Networks

for Online Reinforcement Learning. In Parallel Problem Solving from Nature (PPSN X),

volume 5199 of Lecture Notes in Computer Science (LNCS), pages 518–527. Springer,

2008.

[MF07] C. Mattiussi and D. Floreano. Analog Genetic Encoding for the Evolution of Circuits and

Networks. Transactions on Evolutionary Computation, 11(5):596–607, 2007.

[MH01] A.F.M. Marée and P. Hogeweg. How amoeboids self-organize into a fruiting body: Multi-

cellular coordination in Dictyostelium discoideum. Proceedings of the National Academy

of Sciences, 98(7):3879–3883, 2001.

[MNH+12] E. Murphy, M. Nicolau, E. Hemberg, M. ONeill, and A. Brabazon. Differential Gene

Expression with Tree-Adjunct Grammars. In Parallel Problem Solving from Nature

(PPSN XII), volume 7491 of Lecture Notes in Computer Science (LNCS), pages 377–386.

Springer, 2012.

[Moo91] A. Moore. Variable resolution dynamic programming: Efficiently learning action maps

in multivariate real-valued state-spaces. In Machine Learning: Proceedings of the Eighth

International Conference. Morgan Kaufmann, 1991.

[MSR91] E. Mjolsness, DH Sharp, and J. Reinitz. A Connectionist Model of Development. Journal

of theoretical Biology, 152(4):429–453, 1991.

[NOB12] M. Nicolau, M. ONeill, and A. Brabazon. Applying Genetic Regulatory Networks to

Index Trading. In Parallel Problem Solving from Nature (PPSN XII), volume 7492 of

Lecture Notes in Computer Science (LNCS), pages 428–437. Springer, 2012.

[NSB10] M. Nicolau, M. Schoenauer, and W. Banzhaf. Evolving Genes to Balance a Pole. In Ge-

netic Programming; 13th European Conference (EuroGP 2010), volume 6021 of Lecture

Notes in Computer Science (LNCS), pages 196–207. Springer, 2010.

[PC07] S. Patel and C.D. Clack. ALPS evaluation in financial portfolio optimisation. In Congress

on Evolutionary Computation (CEC 2007), pages 813–819. IEEE, 2007.

Bibliography 163

[QNDR03] T. Quick, C.L. Nehaniv, K. Dautenhahn, and G. Roberts. Evolving Embodied Genetic

Regulatory Network-Driven Control Systems. In Advances in Artificial Life; 7th Eu-

ropean Conference (ECAL 2003), volume 2801 of Lecture Notes in Computer Science

(LNCS), pages 266–277. Springer, 2003.

[Rei99] T. Reil. Dynamics of Gene Expression in an Artificial Genome - Implications for Bio-

logical and Artificial Ontogeny. In 5th European Conference on Advances in Artificial

Life (ECAL 1999), volume 1674 of Lecture Notes in Computer Science (LNCS), pages

457–466. Springer, 1999.

[SB98] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. Cambridge Uni-

versity Press, 1998.

[SB02] M.J. Schilstra and H. Bolouri. Modelling the regulation of gene expression in genetic reg-

ulatory networks. Technical report, BioComputation group, University of Hertfordshire,

2002.

[SF99] H. Shimooka and Y. Fujimoto. Generating Equations with Genetic Programming for Con-

trol of a Movable Inverted Pendulum. In Simulated Evolution and Learning (SEAL 1998),

volume 1585 of Lecture Notes in Computer Science (LNCS), pages 179–186. Springer,

1999.

[SOMMA02] S.S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional

regulation network of Escherichia coli. Nature Genetics, 31(1):64–68, 2002.

[Spo95] M.W. Spong. The swing up control problem for the acrobot. Control Systems, 15(1):49–

55, 1995.

[Sut96] R.S. Sutton. Generalization in reinforcement learning: Successful examples using sparse

coarse coding. In Advances in Neural Information Processing Systems (NIPS 1996), pages

1038–1044. MIT Press, 1996.

[TB04] S.A. Teichmann and M.M. Babu. Gene regulatory network growth by duplication. Nature

Genetics, 36(5):492–496, 2004.

[Wag94] A. Wagner. Evolution of gene networks by gene duplications: a mathematical model

and its implications on genome organization. Proceedings of the National Academy of

Sciences of the USA, 91(10):4387–4391, 1994.

[Wag96] A. Wagner. Does evolutionary plasticity evolve? Evolution, 50(3):1008–1023, 1996.

[WDDA93] D. Whitley, S. Dominic, R. Das, and C.W. Anderson. Genetic Reinforcement Learning

for Neurocontrol Problems. Machine Learning, 13(2):259–284, 1993.

[Wie90] A.P. Wieland. Evolving Controls for Unstable Systems. In Connectionist Models: Pro-

ceedings of the 1990 Summer School, pages 91–102. Morgan Kaufman, 1990.

164 Bibliography

[Wue98] A. Wuensche. Genomic regulation modeled as a network with basins of attraction. In Pa-

cific Symposium on Biocomputing, volume 3, pages 89–102. World Scientific Publishing,

1998.

[YBD01] C.H. Yuh, H. Bolouri, and E.H. Davidson. Cis-regulatory logic in the endo16 gene:

switching from a specification to a differentiation mode of control. Development,

128(5):617–629, 2001.

[YNTI05] J. Yoshimoto, M. Nishimura, Y. Tokita, and S. Ishii. Acrobot control by learning the

switching of multiple controllers. Artificial Life and Robotics, 9(2):67–71, 2005.

[Zah11] P. Zahadat. Evolution and Development in Gene Regulatory Systems. PhD thesis, Shiraz

University, 2011.

[ZCS+10] P. Zahadat, D.J. Christensen, U. P. Schultz, S.D. Katebi, and K. Stoy. Fractal Gene

Regulatory Networks for Robust Locomotion Control of Modular Robots. In From Ani-

mals to Animats 11: 11th International Conference on Simulation of Adaptive Behavior

(SAB 2010), volume 6226 of Lecture Notes in Computer Science (LNCS), pages 544–554,

2010.

[ZK08] P. Zahadat and S.D. Katebi. Tartarus And Fractal Gene Regulatory Networks With Inputs.

Advances in Complex Systems (ACS), 11(06):803–829, 2008.

[ZS12] P. Zahadat and K. Stoy. An alternative representation of fractal gene regulatory networks

facilitating analysis and interpretation. Annals of Mathematics and Artificial Intelligence,

65(4):285–316, 2012.

[ZSC12] P. Zahadat, T. Schmickl, and K. Crailsheim. Evolving reactive controller for a modular

robot: Benefits of the property of state-switching in fractal gene regulatory networks. In

From Animals to Animats 12: 12th International Conference on Simulation of Adaptive

Behavior (SAB 2012), volume 7426 of Lecture Notes in Computer Science (LNCS), pages

209–218. Springer, 2012.

