29 research outputs found

    Hierarchical relational models for document networks

    Full text link
    We develop the relational topic model (RTM), a hierarchical model of both network structure and node attributes. We focus on document networks, where the attributes of each document are its words, that is, discrete observations taken from a fixed vocabulary. For each pair of documents, the RTM models their link as a binary random variable that is conditioned on their contents. The model can be used to summarize a network of documents, predict links between them, and predict words within them. We derive efficient inference and estimation algorithms based on variational methods that take advantage of sparsity and scale with the number of links. We evaluate the predictive performance of the RTM for large networks of scientific abstracts, web documents, and geographically tagged news.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS309 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    CSM-401 - Population based Incremental Learning vesus Genetic Algorithms: Iterated Prisoners Dilemma

    Get PDF
    Axelrod?s originally experiments for evolving IPD player strategies involved the use of a basic GA. In this paper we examine how well a simple GA performs against the more recent Population Based Incremental Learning system under similar conditions. We find that while PBIL performs well, GA in general does slightly better although more experiments should be conducted

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Um modelo neuro-evolutivo de coordenação adaptativa em ambientes dinâmicos

    Get PDF
    Em ambientes dinâmicos e complexos, a política ótima de coordenação não pode ser derivada analiticamente, mas deve ser aprendida através da interação direta com o ambiente. Geralmente, utiliza-se aprendizado por reforço para prover coordenação em tais ambientes. Atualmente, neuroevolução é um dos métodos de aprendizado por reforço mais proeminentes. Neste trabalho, é proposto um modelo de coordenação baseado em neuro-evolução. Foi desenvolvida uma extensão do método neuro-evolutivo conhecido como Enforced Subpopulations (ESP). Na extensão desenvolvida, a rede neural que define o comportamento de cada agente é totalmente conectada. Adicionalmente, é permitido que o algoritmo encontre, em tempo de treinamento, a quantidade de neurônios que deve estar presente na camada oculta da rede neural de cada agente. Esta alteração além de oferecer flexibilidade na definição da topologia da rede de cada agente e diminuir o tempo necessário para treinamento, permite também a constituição de grupos de agentes heterogêneos. Os experimentos realizados mostraram que os agentes treinados com o modelo proposto possuem capacidade de se adaptar a alterações no ambiente em tempo de execução. O modelo foi aplicado no domínio das tarefas de perseguição-evasão.Eje: VI Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    Um modelo neuro-evolutivo de coordenação adaptativa em ambientes dinâmicos

    Get PDF
    Em ambientes dinâmicos e complexos, a política ótima de coordenação não pode ser derivada analiticamente, mas deve ser aprendida através da interação direta com o ambiente. Geralmente, utiliza-se aprendizado por reforço para prover coordenação em tais ambientes. Atualmente, neuroevolução é um dos métodos de aprendizado por reforço mais proeminentes. Neste trabalho, é proposto um modelo de coordenação baseado em neuro-evolução. Foi desenvolvida uma extensão do método neuro-evolutivo conhecido como Enforced Subpopulations (ESP). Na extensão desenvolvida, a rede neural que define o comportamento de cada agente é totalmente conectada. Adicionalmente, é permitido que o algoritmo encontre, em tempo de treinamento, a quantidade de neurônios que deve estar presente na camada oculta da rede neural de cada agente. Esta alteração além de oferecer flexibilidade na definição da topologia da rede de cada agente e diminuir o tempo necessário para treinamento, permite também a constituição de grupos de agentes heterogêneos. Os experimentos realizados mostraram que os agentes treinados com o modelo proposto possuem capacidade de se adaptar a alterações no ambiente em tempo de execução. O modelo foi aplicado no domínio das tarefas de perseguição-evasão.Eje: VI Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    Swarm intelligence in cooperative environments: N-step dynamic tree search algorithm extended analysis

    Get PDF
    Reinforcement learning tree-based planning methods have been gaining popularity in the last few years due to their success in single-agent domains, where a perfect simulator model is available, e.g., Go and chess strategic board games. This paper pretends to extend tree search algorithms to the multi-agent setting in a decentralized structure, dealing with scalability issues and exponential growth of computational resources. The N-Step Dynamic Tree Search combines forward planning and direct temporal-difference updates, outperforming markedly state-of-the-art algorithms such as Q-Learning and SARSA. Future state transitions and rewards are predicted with a model built and learned from real interactions between agents and the environment. As an extension of previous work, this paper analyses the developed algorithm in the Hunter-Pursuit cooperative game against intelligent evaders. The N-Step Dynamic Tree Search aims to adapt the most successful single-agent learning methods to the multi-agent boundaries and demonstrates to be a remarkable advance compared to conventional temporal-difference techniques.Engineering and Physical Sciences Research Council (EPSRC): 2454254. BAE System
    corecore