3,679 research outputs found

    Living Innovation Laboratory Model Design and Implementation

    Full text link
    Living Innovation Laboratory (LIL) is an open and recyclable way for multidisciplinary researchers to remote control resources and co-develop user centered projects. In the past few years, there were several papers about LIL published and trying to discuss and define the model and architecture of LIL. People all acknowledge about the three characteristics of LIL: user centered, co-creation, and context aware, which make it distinguished from test platform and other innovation approaches. Its existing model consists of five phases: initialization, preparation, formation, development, and evaluation. Goal Net is a goal-oriented methodology to formularize a progress. In this thesis, Goal Net is adopted to subtract a detailed and systemic methodology for LIL. LIL Goal Net Model breaks the five phases of LIL into more detailed steps. Big data, crowd sourcing, crowd funding and crowd testing take place in suitable steps to realize UUI, MCC and PCA throughout the innovation process in LIL 2.0. It would become a guideline for any company or organization to develop a project in the form of an LIL 2.0 project. To prove the feasibility of LIL Goal Net Model, it was applied to two real cases. One project is a Kinect game and the other one is an Internet product. They were both transformed to LIL 2.0 successfully, based on LIL goal net based methodology. The two projects were evaluated by phenomenography, which was a qualitative research method to study human experiences and their relations in hope of finding the better way to improve human experiences. Through phenomenographic study, the positive evaluation results showed that the new generation of LIL had more advantages in terms of effectiveness and efficiency.Comment: This is a book draf

    Troping the Enemy: Metaphor, Culture, and the Big Data Black Boxes of National Security

    Get PDF
    This article considers how cultural understanding is being brought into the work of the Intelligence Advanced Research Projects Activity (IARPA), through an analysis of its Metaphor program. It examines the type of social science underwriting this program, unpacks implications of the agency’s conception of metaphor for understanding so-called cultures of interest, and compares IARPA’s to competing accounts of how metaphor works to create cultural meaning. The article highlights some risks posed by key deficits in the Intelligence Community\u27s (IC) approach to culture, which relies on the cognitive linguistic theories of George Lakoff and colleagues. It also explores the problem of the opacity of these risks for analysts, even as such predictive cultural analytics are becoming a part of intelligence forecasting. This article examines the problem of information secrecy in two ways, by unpacking the opacity of “black box,” algorithm-based social science of culture for end users with little appreciation of their potential biases, and by evaluating the IC\u27s nontransparent approach to foreign cultures, as it underwrites national security assessments

    Data-driven Computational Social Science: A Survey

    Get PDF
    Social science concerns issues on individuals, relationships, and the whole society. The complexity of research topics in social science makes it the amalgamation of multiple disciplines, such as economics, political science, and sociology, etc. For centuries, scientists have conducted many studies to understand the mechanisms of the society. However, due to the limitations of traditional research methods, there exist many critical social issues to be explored. To solve those issues, computational social science emerges due to the rapid advancements of computation technologies and the profound studies on social science. With the aids of the advanced research techniques, various kinds of data from diverse areas can be acquired nowadays, and they can help us look into social problems with a new eye. As a result, utilizing various data to reveal issues derived from computational social science area has attracted more and more attentions. In this paper, to the best of our knowledge, we present a survey on data-driven computational social science for the first time which primarily focuses on reviewing application domains involving human dynamics. The state-of-the-art research on human dynamics is reviewed from three aspects: individuals, relationships, and collectives. Specifically, the research methodologies used to address research challenges in aforementioned application domains are summarized. In addition, some important open challenges with respect to both emerging research topics and research methods are discussed.Comment: 28 pages, 8 figure

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Disturbance Detection, Identification, and Recovery by Gait Transition in Legged Robots

    Get PDF
    We present a framework for detecting, identifying, and recovering within stride from faults and other leg contact disturbances encountered by a walking hexapedal robot. Detection is achieved by means of a software contactevent sensor with no additional sensing hardware beyond the commercial actuators’ standard shaft encoders. A simple finite state machine identifies disturbances as due either to an expected ground contact, a missing ground contact indicating leg fault, or an unexpected “wall” contact. Recovery proceeds as necessary by means of a recently developed topological gait transition coordinator. We demonstrate the efficacy of this system by presenting preliminary data arising from two reactive behaviors — wall avoidance and leg-break recovery. We believe that extensions of this framework will enable reactive behaviors allowing the robot to function with guarded autonomy under widely varying terrain and self-health conditions

    Theories and Models of Teams and Groups

    Get PDF
    This article describes some of the theoretical approaches used by social scientists as well as those used by computer scientists to study the team and group phenomena. The purpose of this article is to identify ways in which these different fields can share and develop theoretical models and theoretical approaches, in an effort to gain a better understanding and further develop team and group research
    • …
    corecore