4 research outputs found

    Natural Variation and Neuromechanical Systems

    Get PDF
    Natural variation plays an important but subtle and often ignored role in neuromechanical systems. This is especially important when designing for living or hybrid systems \ud which involve a biological or self-assembling component. Accounting for natural variation can be accomplished by taking a population phenomics approach to modeling and analyzing such systems. I will advocate the position that noise in neuromechanical systems is partially represented by natural variation inherent in user physiology. Furthermore, this noise can be augmentative in systems that couple physiological systems with technology. There are several tools and approaches that can be borrowed from computational biology to characterize the populations of users as they interact with the technology. In addition to transplanted approaches, the potential of natural variation can be understood as having a range of effects on both the individual's physiology and function of the living/hybrid system over time. Finally, accounting for natural variation can be put to good use in human-machine system design, as three prescriptions for exploiting variation in design are proposed

    Evolving neurocontrollers for balancing an inverted pendulum

    Get PDF

    Natural Selection, Adaptive Evolution and Diversity in Computational Ecosystems

    Get PDF
    The central goal of this thesis is to provide additional criteria towards implementing open-ended evolution in an artificial system. Methods inspired by biological evolution are frequently applied to generate autonomous agents too complex to design by hand. Despite substantial progress in the area of evolutionary computation, additional efforts are needed to identify a coherent set of requirements for a system capable of exhibiting open-ended evolutionary dynamics. The thesis provides an extensive discussion of existing models and of the major considerations for designing a computational model of evolution by natural selection. Thus, the work in this thesis constitutes a further step towards determining the requirements for such a system and introduces a concrete implementation of an artificial evolution system to evaluate the developed suggestions. The proposed system improves upon existing models with respect to easy interpretability of agent behaviour, high structural freedom, and a low-level sensor and effector model to allow numerous long-term evolutionary gradients. In a series of experiments, the evolutionary dynamics of the system are examined against the set objectives and, where appropriate, compared with existing systems. Typical agent behaviours are introduced to convey a general overview of the system dynamics. These behaviours are related to properties of the respective agent populations and their evolved morphologies. It is shown that an intuitive classification of observed behaviours coincides with a more formal classification based on morphology. The evolutionary dynamics of the system are evaluated and shown to be unbounded according to the classification provided by Bedau and Packard’s measures of evolutionary activity. Further, it is analysed how observed behavioural complexity relates to the complexity of the agent-side mechanisms subserving these behaviours. It is shown that for the concrete definition of complexity applied, the average complexity continually increases for extended periods of evolutionary time. In combination, these two findings show how the observed behaviours are the result of an ongoing and lasting adaptive evolutionary process as opposed to being artifacts of the seeding process. Finally, the effect of variation in the system on the diversity of evolved behaviour is investigated. It is shown that coupling individual survival and reproductive success can restrict the available evolutionary trajectories in more than the trivial sense of removing another dimension, and conversely, decoupling individual survival from reproductive success can increase the number of evolutionary trajectories. The effect of different reproductive mechanisms is contrasted with that of variation in environmental conditions. The diversity of evolved strategies turns out to be sensitive to the reproductive mechanism while being remarkably robust to the variation of environmental conditions. These findings emphasize the importance of being explicit about the abstractions and assumptions underlying an artificial evolution system, particularly if the system is intended to model aspects of biological evolution

    Evolved Neurocontrollers for Pole-Balancing

    No full text
    An evolutionary algorithm for the development of neural networks with arbitrary connectivity is presented. The algorithm is not based on genetic algorithms, but is inspired by a biological theory of coevolving species. It sets no constraints on the number of neurons and the architecture of a network, and develops network topology and parameters like weights and bias terms simultaneously. Designed for generating neuromodules acting in embedded systems like autonomous agents, it can be used also for the evolution of neural networks solving nonlinear control problems. Here we report on a rst test, where the algorithm is applied to a standard control problem: the balancing of an inverted pendulum. in: J. Mira, R. Moreno-Diaz, J. Cabestany (Eds.), Biological and Articial Computation: From Neuroscience to Technology, Proceedings IWANN'97, Lanzarote, Canary Islands, Spain, June 1997, Springer Verlag, Berlin, pp. 1279 - 1287. 1 1 Introduction The combined application of neur..
    corecore