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Abstract

The paper introduces an evolutionary algorithm� that is tailored to gen�

erate neural networks functioning as nonlinear controllers� Network size

and architecture as well as network parameters like weights and bias terms

are developed simultaneously� There is no quantization of inputs� outputs

or internal parameters� Di�erent kinds of evolved networks are presented

that solve the pole�balancing problem� i�e� balancing an inverted pendu�
lum� with good benchmark performance� Controllers solving the problem

for reduced phase space information �only two inputs� use a recurrent con�

nectivity structure and are very small in size� The typical behavior of

controllers is characterized by the �rst return map of their control signals�

�submitted for publication�
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� Introduction

Neural networks with recurrent connectivity structure are an interesting subject
to study� because of their rich dynamical behavior spectrum� Viewed as discrete�
time parametrized dynamical systems� simulations reveal that small networks are
already able to display dynamical features like periodic and chaotic attractors�
various bifurcation sequences� hysteresis e�ects� synchronization and other more
general coherence e�ects ����� ����� ��	�� These properties depend on parameters
like synaptic weights and bias terms� but also on the placement of excitatory and
inhibitory connections along closed signal loops�

On the other hand� biological brains can be considered as modularized neu�
ral systems with highly recurrent connectivity
 that is� there exist many closed
signal loops� composed of excitatory and inhibitory synapses� between function�
ally di�erent groups of neurons �modules� as well as between individual neurons�
This suggests that higher level information processing or cognitive abilities of
biological brains are based on the complex dynamical properties of interacting
dynamical neural modules� Correspondingly� the idea underlying the investi�
gations presented� is that also arti
cial neural systems with at least low level
cognitive abilities should be developed as modular systems using the dynamical
features of recurrent neural structures� By low level cognitive systems we refer
to neural systems that can serve as �arti
cial brains� for �arti
cial bodies� in
natural or arti
cial environments�

Although� to us� this seems to be an appealing hypothesis� many unsolved
problems have to be considered� How can the complex dynamics of a recurrent
neural system contribute to functions like perception� memory� prediction� plan�
ning� etc�� What kind of module architecture to choose� How to place inhibitory
and excitatory connections� How should modules with speci
c functions interact
to provide a desired performance of the composed system� Up to now there is no
way to construct versatile dynamical modules� to design an e�ective interaction
of appropriate dynamical modules� or to implement dynamical attractors relevant
for a speci
c cognitive task with the help of a learning algorithm� Furthermore�
there is no unique correspondence between the size and structure of a neural
system and the speci
c function it can and has to display� This is one aspect one
can learn from the results presented in this paper�

Because of the lack of design principles for dynamical neuromodules and mod�
ular neural systems� we think that evolutionary algorithms� which do not restrict
the size or the connectivity structure of a system� are at the moment the only
way out of this dilemma� In section � we present an algorithm satisfying these
conditions
 that is� initially neither the number of neurons nor the architecture is
speci
ed� Network size and topology as well as network parameters like weights
and bias terms are generated simultaneously� To apply this kind of evolutionary
process� which is not based on genetic algorithms� one has to work of course
in the context of systems acting in a sensori�motor loop� like living beings or
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autonomous agents �robots or softbots�� The simplest such systems � receiving
signals from sensors and providing behavior�relevant signals for a �motor� system
� are control systems�

As one of the 
rst tests for our evolutionary algorithm we therefore have
chosen the pole balancing problem� Balancing an inverted pendulum that is
mounted on a cart provides a well known class of control problems and often
serves as a benchmark problem for trainable controllers ���� The objective of
the investigations reported here was to evolve neural controllers� that not only
balance the pole� but at the same time can center the cart and avoid boundaries
of the given interval in which the cart can move� To make the problem even more
sophisticated� we also used reduced phase space information �only cart position
and pole angle� as inputs for the controller� expecting recurrent neuromodules to
evolve� The results obtained for di�erent input con
gurations and neuron models�
using di�erent transfer functions like tanh or the strictly positive sigmoide �� �
e�x���� are described in section ��

Besides conventional control techniques� there have been many successful ap�
plications of neural networks to the pole balancing problem e�g� ���� ���� ���� �����
����� Using continuous neurons for the controllers� in contrast to many other
results� our approach does not make use of quantization either of the physical
phase space variables or of internal network parameters� such as weights and
bias terms or output values� Compared with other neural network solutions� the
neural structures obtained by our evolutionary algorithm are very small in size
and show a comparable or even better performance� Section � gives a discussion
of our results� Appendix � analyses the dynamics of the chaotic output layer of
one of the evolved controllers� and appendix � describes the typical behavior of
controllers in terms of the 
rst return map of their control signals�

� The evolutionary algorithm

The combined application of neural network techniques and genetic algorithms
turned out to be a very e�ective tool for solving an interesting class of problems
�for a review see e�g� ���� �	�� ����� ������ especially in situations where there is no
good guess for an appropriate network architecture or where recurrent dynamic
networks should be used for tasks like generation of temporal sequences� recog�
nition� storage and reproduction of temporal patterns� or control problems that
require memory to compute derivatives or integrals�

The algorithm described below is inspired by a biological theory of coevolu�
tion and is not based on genetic algorithms� It uses standard additive neuron
models with sigmoidal transfer functions and sets no constraints on the number
of neurons and the architecture of a network� It develops network topology and
parameters like weights and bias terms simultaneously� Using a behavior based
approach to neural systems� the algorithm was originally designed to study the
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appearance of complex dynamics and the corresponding structure�function re�
lationship in arti
cial sensori�motor systems for autonomous robots or software
agents� For the solution of extended problems �more complex environments or
sensori�motor systems� the synthesis of evolved neuromodules forming larger neu�
ral systems can be achieved by evolving the coupling structure between modules�
This is done in the spirit of coevolution of interacting species� Because of this
background� the evolving process is called �evolution of neural systems by stochas�
tic synthesis� or the ENS � �algorithm� We suggest that this kind of evolutionary
computation is better suited for evolving neural networks than genetic algorithms�

To start the ENS � �algorithm� we 
rst have to decide on the type of neurons
to use for the network� We prefer to have the same type of neurons for output
and internal units
 the input units here are used as bu�ers as in feedforward
networks� The number of input and output units is chosen according to the
de
nition of the problem given in terms of incoming sensor and outgoing motor
signals� Nothing else is determined� neither the number of internal units nor their
connectivity� that is� self�connections and every kind of recurrence are allowed�
as well as excitatory and inhibitory connections� but no backward connections to
input units are allowed�

To evolve the desired neuromodule we consider a population p�t� of n�t� neu�
romodules undergoing a variation�evaluation�selection loop� i�e�

p�t� �� � S �E �V p�t� � ���

The three major steps of this variation�evaluation�selection loop are given as
follows�

The variation operators V include insertion and deletion of neurons� insertion
and deletion of connections� and alterations of bias and weight terms� The as�
sociated operators acting on the ith member of the population p are denoted by
N�

i � N
�

i � C
�
i � C

�

i � N
�

i and C�

i respectively� A variation pass is then described by

V � p�t� ��
n�t�Y
i��

C�

i C
�
i C

�

i N
�

i N
�
i N

�

i p�t� �

The operators N�����
i � C�����

i are of stochastic character� The chance that they
will execute their respective action is determined by 
xed per�neuron and per�
connection probabilities� In a more complex version� the variation operator V
may also induce the exchange of entire subnetworks between members of the
population p�

In the next step� the performance of each individual neuromodule of a popu�
lation is evaluated� Thus the evaluation operator

E � p�t� �� �p�t�� e�t��

is de
ned problem�speci
cally� In its simplest form� the performances ei�t� of the
n�t� networks in the population p�t� are mutually independent� As an example�
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for a classi
cation task the performance of each member of the population could
be based on an error function ���� like those utilized by the backpropagation
learning algorithm� The evaluation operator usually will be deterministic
 more
sophisticated versions may also account for network size and past performance�
Furthermore� interactions between members of the population can be de
ned
via an arti
cial sensori�motor loop opening up the potential for coevolutionary
dynamics�

Di�erential survival of the varied members of the population is de
ned by
the selection operator� Possible de
nitions range from �a� probabilistic survival
according to evaluation results to �b� winner�takes�all selection� The selection
operator is given by

S � �p�t�� e�t�� ��
n�t�Y
i��

R
��ei�t��
i p�t� �

Here Ri is the reproduction operator for the ith network in the population p�
Consequently� ��ei�t�� copies of each such network are passed to the new popula�
tion� In case �a�� applied in the following� these integer numbers � are stochastic
variables drawn e�g� from Poisson distributions with mean values larger than �
if ei�t� �

Pn�t�
i�� ei�t��n�t� and mean values smaller than � for the other networks

in the population p� Case �b� is de
ned by ��ei�t�� � n�t� if ei�t� � maxi ei�t�
and ��ei�t�� � � otherwise� The number of module copies passed to the next
population depends on its performance�

The evolution of the population p is then generated by repeated application
of the mapping p�t� �� SEV p�t� on the initial population p���� In conse�
quence of the selection process the average performance of the population will
in general either stay the same or increase� So after repeated passes through
the variation�evaluation�selection loop� individual neuromodules that solve the
considered problem have built up in the population�

� Evolving pole�balancing controllers

The cart�pole system� to be controlled by the neurocontroller� is given by an
inverted pendulum mounted on a cart� The cart can move in a bounded interval�
We want to evolve controllers that can not only balance the pole but satisfy three
objectives simultaneously� balancing the pole� avoiding the interval boundaries�
and centering the cart�

We use the standard benchmark values for this problem de
ned for instance
in ���
 taht is� the cart position x is bounded by the interval ���� � x � ��� �m��
the pole angle � by ��� � � � �� ���� The force F applied to the cart� providing
the controlling signal� varies continuously between ��� � F � �� �N �� We do
not use friction terms like e�g� ��� because� as stated in ���� they are too small to
generate interesting e�ects� and on the other hand they may cause the stopping

	



of the cart in cases where controllers would allow for instance small oscillations�
For simulations of the cart�pole system we use the following equations

�� �
mg sin � � cos � �F �mp l ��

� sin ��

l ����m�mp cos� ��
�

�x �
F �mp l � ��

� sin � � �� cos � �

m
�

where g � ���� �m�s�� denotes gravitational acceleration� mc � ��� �kg� and
mp � ��� �kg� mass of cart and pole� respectively� m �� �mc �mp�� l � ��	 �m�
half of pole length� and F denotes the force applied to the cart� The cart�pole
dynamics is computed by using Euler discretization with time step � � ���� �s��

For the neural controller we will use the standard additive neuron model with
sigmoidal transfer function �� i�e� the discrete dynamics of the neurocontroller is
given by

ai�t � �� ��
nX

j��

wij��aj�t�� � �i

where ai denotes the activity� oi � ��ai� the output� and �i the bias term of
neuron i
 wij denotes the weight from neuron j to neuron i� All neuron states
are updated simultaneously with the states of the cart�pole system�

A failure signal is given if jxj � ��� or j�j � ��� or balancing time t exceeds
a given time tmax� The 
tness function f for the evaluation of an individual
module takes into account costs for each neuron and for each connection �to obtain
networks of minimal size�� and the balancing time until failure� Furthermore� the
applied force integrated over the balancing time can enter the 
tness function�
This will optimize the applied force to balance the pole� taht is� in general this
will minimize oscillations of the cart and�or the pole� Thus� the 
tness function
for an evaluated module has the general form

f �� P � costn �Nn � costs �Ns � costF � IF ���

where P denotes the output performance of a module given by

P ��
nX
i��

� � ���	 � ���
�	 � j��i�j

�
� � ���	 � ���

jx�i�j

���
�� �

with n the maximal number of iterations
 i�e� the maximal balancing time is
tmax � n � �� The constants costn� costs� and costF describe the costs of a
neuron� a synapse� and the applied force� respectively
 Nn and Ns denote the
number of neurons and of synapses in the module� and the integrated force term
IF is given by

IF �
�

tmax

nX
i��

jF �i�j �� �
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It turns out that simulations with populations of �� � 	� individuals are optimal�
During intermediate states of the evolutionary process� the 
ttest modules may
become quite large � more than �� neurons and ��� synapses � and network size
and architecture are often varied� Later in the evolutionary process there appear
smaller modules with equally good or even better performance�

In the following we present and discuss di�erent kinds of evolved neurocon�
trollers� There are two classes of controllers
 one� called t�class� uses additive units
with anti�symmetric transfer function ��x� � tanh�x�� the other one� the s�class�
uses the strictly positive transfer function ��x� � �� � e�x���� The 
rst class of
controllers needs only one output neuron providing a force F � �� � tanh�ai��N��
where ai denotes the activity of the unique output unit i� The s�class needs two
output units� i and i� �� giving a force F � �� � ���ai�� ��ai�����N��

Evolved neurocontrollers having full access to phase space information of the
cart�pole system can be very simple� as is well known since the paper of �����
Here their four continuous input signals are proportional to cart position x and
velocity �x� pole angle � and angular velocity ��� Therefore we will only brie�y
discuss the evolved solutions� In fact� the ENS � �algorithm came up with the
simplest possible architecture� thus demonstrating that it is able to generate
minimal neural structures� at least for this simple control problem�

Controllers using only reduced phase space information� i�e� getting only two
input signals proportional to cart position x and pole angle �� respectively� have
to solve a more di�cult problem� In this situation it has to be expected� that
neurocontrollers make use of a recurrent connectivity structures� because the
derivatives �x and �� now have to be computed� So we will mainly concentrate on
the evolution of ��input controllers�

We tested the performance of all evolved con
gurations on �� x �� benchmark
initial conditions �x�� ��� �x� � ��� � ���� represented in the following by squares�
as for example in Fig� �a
 initial conditions� for which the controller balances the
pole longer than ��� seconds� are coded in black
 the others are white� Outer
squares represent initial conditions that will already produce a failure signal�
The second type of diagram� as for instance Fig� �b� shows the behavior of the
controlled system �displaying x� �� and F as functions of time� starting from ex�
treme initial conditions� If not stated otherwise� they are given by x� � �����m��
�� � ������rad�� �x� � ��� � ���� The individual methods of handling the control
problem become apparent from these diagrams�

In the following� the evolved control modules will be represented by their
weight matrices
 that is� we denote the weight matrix of con
guration k by wk�
the weight vector of its neuron i by wk

i � �wk
i�� w

k
i�� � � � � w

k
in� with wk

i� denoting
the bias term of unit i�

 



��� ��input�modules

We will 
rst consider controllers having access to the full phase space information
of the cart�pole system� Here the four input units of controllers receive the input
signals�

in� �� x���� � in� �� �	 � ��� � in� �� �x���� � in� �� �	 � ���� �

����� A minimal t�class controller

This class of controllers uses its output unit 	 to provide a force F given by

F �t� � �� � tanh�a	�t�� �

For initial conditions con
ned to the benchmark domain� it is well known �see
e�g� ����� that there exist neural network solutions using only the output unit and
no internal neurons� In contrast to classical network solutions� which had binary
output units ���� �� providing a pulsed force to the cart �bang�bang control��
here a continuous force is applied� The evolved controller shown in Fig� �a
demonstrates that our evolutionary algorithm is able to generate such minimal
solutions� One of them has weight vector

w� � w�
	 � � ���� ������ �	��� ���� � ����� � ���

Figure �� Minimal controllers with four inputs
 a�� a t�class controller �w��� b��
and c�� s�class controllers �w� and w���

We observe from Fig� �a� that the minimal module w� avoids the ends of
the interval very e�ectively
 furthermore it centers the cart after not more than
�� seconds and balances the pole without oscillations� as can be seen from dia�
grams in Fig� �b� Balancing time is in
nitely long when starting on black initial
conditions�
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a� b�

Figure �� Controller w�� a�� Benchmark initial conditions �black� for which
balancing time is larger than ����s�� b�� Cart position x� pole angle � and force
F as functions of time� starting at x� � ����� � � ������

Although the module was evolved with initial conditions x� and �� inside the
benchmark domain� we observed that it performs well also on initial conditions far
outside this domain� Other evolved t�class modules� using for instance one hidden
neuron� performed equally well� Some of them utilized also internal oscillators�
which came into action only if the physical system reached certain critical phase
space domains� If there was no optimizing condition for the applied force �i�e�
costF � ��� almost all solutions solved the balancing problem with a continuously
oscillating force and cart�

����� Two s�class controllers

This class of controllers uses output units 	 and � with transfer function ��x� �
�� � e�x��� to provide a force

F �t� � �� � ���a	�t��� ��a
�t��� �

Using the relations

tanh�x� � �����x�� �� � ����x�� ����x��

an architecture from one class may be converted to an equivalent one in the other
class� but here we want to study wether there will evolve speci
c architectures
for each class of controllers� Two such evolved s�class neurocontrollers �w� and
w�� are given by ��� and �	� with architectures shown in Fig� �b and �c�

w� �
�
w�
	

w�



�
�
�
����� ���	 ����� � �	� ���� ��� ���
����� ��� ��� ��� ��� ��� ���

�
� ���

w� ��
�
w�
	

w�



�
�
�
����� ����� ���� ���� ���� ����� ���
����	 ��� ���� ��� ��� ��� 	�	�

�
� �	�

�



Both controllers will balance the pole and center the cart in less than ��
seconds starting from a large domain of benchmark initial conditions �compare
Fig� �a and �a�� There is no swing around zero of the cart even starting from
extreme initial conditions� and also the pole does not oscillate �compare Fig� �b
and �b��

Controller w� from Fig� �b reproduces the architecture of t�class controller
w�� but is less e�ective in controlling the critical �lower�left� upper�right� corners
of the benchmark domain� because it can apply only half of the allowed force�
The constant output of neuron � is �������� � ����	� i�e� the force can vary only
between ����	 � F � ��		� The controller w� uses the self�connections of output
units for more e�ective control of the critical corners of the benchmark domain
�Fig� �a� and slows down cart and pole much faster �compare Fig� �b��

a� b�

Figure �� Controller w�� a�� Benchmark initial conditions �black� for which
balancing time is larger than ����s�� b�� Cart position x� pole angle � and force
F as functions of time� starting at x� � ����� �� � ������

a� b�

Figure �� Controller w�� a�� Benchmark initial conditions �black� for which
balancing time is larger than ����s�� b�� Cart position x� pole angle � and force
F as functions of time� starting at x� � ����� �� � ������

��



��� ��input�modules

Reducing the inputs to the control module to only the cart position and the pole
angle makes the problem for the controller more sophisticated� It now has to com�
pute the derivatives �x and ��� and therefore modules with recurrent connections
should be expected� As inputs we choose again for both types of controllers

in� �� x���� � in� �� �	 � ��� �

����� t�class controllers

Figure 	� Three examples �w�� w	� w
� of evolved t�class neurocontrollers�

Among many other networks� including even larger ones� the evolutionary algo�
rithm came up with the three architectures depicted in Fig� 	� Their con
gura�
tions are given by the following weight matrices�

w� � w�
� � � ��� ���	 ��	� ����	 � 
 ���

w	 �

�
B�
w	
�

w	
�

w	
	

�
CA �

�
B�
��� ����  �	� ����� ���� ���
��� �� ��� ��� ��� �� 	 ������
��� ����� ��� ��� ��� ���	

�
CA � � �

w
 �
�
w

�

w

�

�
�
�
��� ��� ���� ���� ���� 
��� ����	 ��� ����� ��	�

�
� ���

As can be seen from Figs� �a�  � �� they all balance the pole longer than ���
seconds on a large �x� ���domain of initial conditions with �x� � ��� � ��

The simplest evolved t�class solution w� �Fig� 	a� given by ��� uses no hidden
neuron� but only the output neuron with an inhibitory self�connection� As Fig�
�a demonstrates� it does balancing and wall avoiding for a large domain of initial
conditions
 but it does not center the cart� i�e� the cart keeps oscillating around
zero with an apparently constant amplitude corresponding to its initial position�
as can be seen from Fig� �b�
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a� b�

Figure �� Controller w�� a�� Benchmark initial conditions �black� for which
balancing time is larger than ����s�� b�� Cart position x� pole angle � and force
F as functions of time� starting at x� � ����� �� � ������

a� b�

Figure  � Controller w	� a�� Benchmark initial conditions �black� for which
balancing time is larger than ����s�� b�� Cart position x� pole angle � and force
F as functions of time� starting at x� � ����� �� � ������

The second solution w	 �Fig�	b� given by � � is interesting not only because
it has an optimal performance �compare Figs�  a and  b� but also because it
represents a solution with two coupled modules� It centers the cart with only
a few damped oscillations and balances the pole with zero oscillations in less
than �� seconds from almost all benchmark initial conditions
 Fig�  b� gives an
example�

To verify that this solution is in fact a modularized network with neurons ��
� and � reproducing the balancing module of Fig� 	a� and neurons �� � and 	
functioning as a cart centering network� we evolved controllers that only had to
center the cart starting from any position in the interval jxj � ���� Using two
inputs �x and �x� simple solutions evolved taht brought the cart into the central
position without any swing around zero� Using only the cart position x as input�
the cart still oscillated around zero� but now with a damped oscillation� bringing

��



Figure �� A control module centering the cart using only cart position x as input�

the cart 
nally to rest at zero� Such an evolved solution wcart was given by

wcart �
�
wcart
�

wcart
�

�
�
�
����� ������ �	�� ���
����� ����	 ��� ���

�

 ���

and is shown in Fig� �� It uses a delay line �wcart
�� and wcart

�� � to satisfy the task
 the
self�connection of output unit � simply smoothes the movement of the cart� Thus�
the evolved controller w	 can be understood in terms of two submodules
 the cart
centering module wcart acts on the pole balancing module w� via the connection
w�
��� From this simple example� we may already deduce that interacting modules

may retain their architecture� but will re�adapt their internal parameters �here
synaptic weights and bias terms� to achieve an e�ective resulting action�

a� b�

Figure �� Controller w
� a�� Benchmark initial conditions �black� for which
balancing time is larger than ����s�� b�� Cart position x� pole angle � and force
F as functions of time� starting at x� � ����� �� � ������

The third solution w
 �Fig� 	c� given by ��� uses two recurrent loops �one self�
connection w


�� and the loop �w

��� w



���� to solve the problem in an unconventional
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way� After bringing the cart position and pole angle near zero from almost all
initial conditions �compare Fig� �a�� it starts to generate apparently �erratic�
control signals� which are nevertheless able to prevent the pole from falling and
to keep the cart o� the interval boundaries� This can be read from Fig� �b�
where a 
ve minute recording of cart position x� pole angle �� and force F is
displayed� Analyzing the dynamics of the ��module composed of neurons � and �
for stationary inputs� we observe quasi�periodic attractors for values I�� I� around
zero� Thus� for small x and � the irregular behavior of the controlled systems
may result from coupling its eigenmodes back to a quasi�periodic control system�

����� Three s�class solutions

Figure ��� Three examples �w�� w�� w
� of evolved s�class neurocontrollers�

The three neurocontrollers shown in Fig� �� are examples of evolved �minimal�
con
gurations for s�class controllers� Their con
gurations are given by the fol�
lowing weight vectors�

w� �
�
w�
�

w�
�

�
�
�

�� � ���� ����� ���� ���
����	 ��� ����		 ���	 �����

�

 ����

w� �

�
B�
w�
�

w�
�

w�
	

�
CA �

�
B�
���� � ��� ����� ��� ��� �	���
����� ��� ������ ���� � ��� ���
��� � � ��� �	��� ��� ��� ���

�
CA 
 ����

w
 �
�
w�
�

w�
�

�
�
�
��� � ��� ����	 ��� � �����
����� �����	 ��	�� ���� � �����

�
� ����

Again they solve the problem for a large domain of benchmark initial con�
ditions �compare Figs� ��a� ��a� and ��a�� But none of them bring cart and
pole simultaneously to rest at zero� Instead� with a successful control the 
nal
state is characterized by more or less small oscillations around the zero positions
�compare Figs� ��b� ��b� and ��b��
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a� b�

Figure ��� Controller w�� a�� Benchmark initial conditions �black� for which
balancing time is larger than ����s�� b�� Cart position x� pole angle � and force
F as functions of time� starting at x� � ����� �� � ������

a� b�

Figure ��� Controller w�� a�� and b�� as in Fig� ���

Although the three controllers have almost the same benchmark performance�
they use di�erent �techniques� to solve the problem� For instance controller w�

���� damps the cart oscillations around the origin to an amplitude that is con�
stant after some time� It is endowed with a switchable oscillator realized by the
inhibitory self�connection of neuron � ����� but this turns out not to be essential
here� Self�inhibition with values just above the critical value w�� � ���� damps
pole oscillations as well and gives the same benchmark results� Correspondingly�
the excitatory self�connection w�� of neuron � keeps the amplitude of cart oscil�
lations at a constant value
 simulations show� that for w�� � � the oscillation
amplitude of the cart will slowly grow again after 
rst being damped to a lower
value� In contrast to w�� controller w� ���� makes explicit use of its oscillator
given by unit �� it brings the cart almost at rest at zero� but keeps the pole
oscillating forever as can be seen from Fig� ��� It furthermore uses delay lines
for the pole angle signals� Controller w
 ���� is the one with the best benchmark
performance �see Fig� ��a�b�� It uses higher periods and even chaotic dynamics
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a� b�

Figure ��� Controller w
� a�� and b�� as in Fig� ���

to stabilize the system in a comparatively short time �around �� seconds for ex�
treme initial conditions� compare Fig� ��b�� In fact� output units � and � form a
�chaotic neuromodule� ����� and simulations for this con
guration show that the
controller really uses also the chaotic domain of the module� that is� for speci
c
�stationary� control inputs the dynamics of the output module is determined by
a chaotic attractor �compare appendix � of this paper��

� Discussion

We have demonstrated that the ENS � �algorithm presented in Sec� � can be
applied successfully to control problems such as balancing an inverted pendulum�
The evolved solutions are remarkably e�ective� that is� they function with low
computational e�ort when compared with solutions of classical control techniques�
and they are small in size with low connectivity when compared with other neural
network solutions� Especially for the case where controllers get only reduced
phase space information �Sec� ����� the recurrent connectivity of the evolved
control modules keeps networks small in size and remarkably e�ective� Since
many published results on neurocontrollers for this problem do not present data
for cart centering and wall avoiding like Figs� ���� ���� and ������ we can only
suspect that for instance the control modules w	 and w
 can compete with those
solutions�

The results presented here also demonstrate that there is no need for phase
space quantization � used in many classical approaches � to handle this control
problem� In contrast to solutions generated by genetic algorithms �GA�� all net�
work parameters like synaptic weights and bias terms are continuous
 this might
be an advantage for getting �minimal� solutions without losing e�ectiveness� the
number of neurons nor the type of connectivity structure is 
xed in advance� size
and structure of neurocontrollers crucially depend on 
tness functions like the
one given by equation ���� If costs for neurons and connections �i�e� costn and
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costs in ���� are set to low values� then also large networks with more internal
neurons �up to � ��� and higher connectivity �up to � �� synapses� still having
a good performance were observed� If there is no cost term minimizing the force
applied to the cart �costF � in ���� solutions tend to use internal oscillators� keep�
ing the pole balanced by permanent oscillations� These oscillators are realized
for instance by inhibitory self�connections ���� or loops of two or three neurons
����� We also observed solutions making use of switched oscillators� which come
into action only if the physical system enters critical phase space domains�

In addition� the evolved controllers are quite robust in many respects� A
moderate noise on the input signals did not e�ect their performance noticeably�
Varying the discretization time step � between ���� and ���� does not e�ect the
principle functioning of most of the controllers� Although evolved for time steps
� � ����� controller w	 � �� for example� still operates with good performance
for time steps up to � � ���	� Comparing the controllers of this paper with
controllers evolved for discretization time steps � � ���� as in �� � we observe
that the same architecture will do the job with slightly di�erent weights� compare
for instance controller w
 of this paper with controller w
 of �� �� But also
controllers with the same architecture but very di�erent weights can solve the
problem �compare e�g� w	 �� � ����� of this paper with w� �� � ����� of �� ���
Likewise� the application of standard friction terms ��� to cart and pole also
does not make a large di�erence for many controllers� evolved for the frictionless
case� most of the time they have an even better performance on the benchmark
domain� Controllers evolved for the problem with friction make use of the same
architectures� sometimes with only slightly di�erent weights �compare e�g� w�

and w� of this paper with controllers given in ������
On the other hand� varying weight parameters of a controller can have a

critical e�ect
 for instance eliminating an internal oscillator � by moving e�g� the
strength of a self�connection past a critical value � may reduce the performance
of the module drastically� Often also the values for bias terms are critical� For
instance� bias terms of output neurons will determine� of course� where on the
interval the cart is coming to rest �or around which position it is oscillating�
 so
exact centering corresponds in general to speci
c bias terms of output neurons�

Even though the evolved networks studied in this paper only had to solve a
simple problem� we believe that there is nevertheless something to learn for a
theory of neural processing� The fact that every ��input controller used an in�
hibitory self�connection or a ��loop with one inhibitory connection� con
rms the
e�ectiveness of recurrent networks as well as the crucial role played by inhibitory
connections in neural processing tasks� Even the few evolved neurocontrollers
described here show that there is no simple structure�function relationship� one
and the same task can be solved by many di�erent kinds of network con
gura�
tions �architectures as well as parameter settings� using di�erent �techniques�
�e�g� delay lines� internal oscillators or no oscillators at all�� We also saw that
the realized network structures and network functions depend on the �survival
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conditions�� that is� on the 
tness function given by ���� With examples from
sections ����� and ����� we can also deduce that di�erent kinds of neurons will
give rise to speci
c architectures�

Moreover� the evolved controller w	� which has the best benchmark perfor�
mance of examples presented in this paper� suggests that modularity of dynamic
recurrent networks is in fact a desirable � if not �natural� � design principle for
neurocontrollers� It demonstrates that functionally di�erent modules can co�
operate or compete to generate a desired behavior� This is also in the spirit of
evolutionary robotics� where one has to generate �brains� or nervous systems for
robots� which have to operate on di�erent noise sensor inputs and have to coordi�
nate di�erent motor actions to behave successfully in an interesting environment
�compare e�g� ����� ������

There is one more observation one can make� there are controllers with a
�genuine� internal dynamics� i�e� one which is immanent in the structure �for ex�
ample oscillations� as for w��� which here is functional in the sense that keeping
the cart in fast oscillations will balance the pole� Controller w
 demonstrates that
even chaotic dynamics may be used to stabilize the system� In other controllers
an internal dynamics is observed �e�g� w
� that is not caused by the network
structure and that seems to be induced by the back�coupling of �motor� actions
to the �sensors� in the sensori�motor loop� In some controllers also an inter�
nal dynamics can be observed that is coherent with the external dynamics� for
instance neuron activities �representing� the �oscillatory� cart position or pole
angle�

Because the ENS � �algorithm was originally designed to study theoretical as�
pects of modularized recurrent networks� we were not concerned about statistics
on computation time� Perhaps for classical problems like pattern classi
cation�
evolution will not outperform algorithms like backpropagation� This became
clear� for instance� when solving the parity�n problems with the evolutionary al�
gorithm as reported in ���� The advantage of the ENS � �algorithm� however� is
that it also generates di�erent unconventional �that is� not strictly layered feed�
forward� solutions to function approximation� which are interesting to study for
theoretical reasons�

Besides the 
rst results presented here� further simulations on more di�cult
problems� such as for instance balancing a rotating pendulum or a ball on a
beam� indicate that the ENS � �algorithm may already be successfully applied to
many challenging control applications� But the ENS � �algorithm can be opti�
mized further� for instance the evaluation of an individual network� given by
the operator E in the variation�evaluation�selection cycle� may be replaced by an
evaluation�learning cycle� if an appropriate learning procedure is at hand�
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Appendix �� Dynamics of controller w�

In the folling we want to consider the dynamics of the chaotic controller
w
� i�e� we consider the output units of w
 as a separate ��module with bias
terms �� � ��� � and �� � ����� receiving stationary inputs I� and I�� �Recall
that in the controller w
� inputs can vary as follows� �����	 � I� � ����	 and
��	��	 � I� � �	��	�� That there is in fact a complex dynamical behavior for
smaller input values can be read 
rst from the iso�periodic plot displayed in Fig�
��� besides a larger domain corresponding to 
xed point attractors �white area��
there are two broad strips of period�� attractors for I� around � �	� I� � �� and
I� around � �	� I� � �� At the corners of the period�� domains� we observe
period doubling bifurcations to chaotic attractors� The asymmetry �corners�
of the period two domains is the result of starting always with the same initial
condition� So we can already anticipate that at the corners a 
xed point attractor
will coexist with a chaotic attractor �e�g� at �I�� I�� � ����������	��� Between
the two period�� strips� near the origin we 
nd attractors of higher periods as
well as quasiperiodic attractors�

Figure ��� Iso�periodic plot for the output module of controller w
� Fixed point
attractors are coded white� others as shown �see text��

The dynamic complexity of this module becomes even more apparent in Fig�
�	� where a bifurcation sequence for I� as control parameter is given� The input
I� � ��� is 
xed and o denotes the averaged module output� i�e� o � �����o��o���
Starting with a 
xed point attractor for I� � ��	��� it follows a period doubling
route to chaos� starting at I� � ����� and ending for I� � ����� It follows a new
sequence of period doubling bifurcations starting from a period�� attractor and
ending at I� � ����� Then an interval with periodic and quasi�periodic attractors
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Figure �	� A bifurcation sequence for I� with I� � ��� 
xed�

follows� 
nally ending �I� � ��� �� in a 
xed point attractor domain� which is
interrupted by the intervall ��	 � I� � ���	 corresponding to period�� attractors�
What can be also read from Fig� �	 is that around I� � �	�	 a �backward�
period doubling route to chaos coexists mainly with the period�� attractors of
the �forward� period doubling route to chaos� This is visualized by overlaying
multiple passes with di�erent initial conditions�

Figure ��� A chaotic attractor for �I�� I�� � ��	���������

Acting in the controller w
� inputs to the module are coming from input
neurons � and � and will cover the domain shown in Fig� ��� Although the
controller dynamics in general will not end up on an attractor� the appearance of
di�erent periods in the control signal �force F � can be observed also in Fig� ��b�
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Appendix �� Characterizing controllers by return
maps of their force signal

An interesting observation is that the individual action of controllers can be
made clearly visible by plotting the 
rst return map of their force signal� This
becomes apparent in the following 
gures where F �t��� is plotted over F �t� for
controllers w�� and w	 to w
� The displayed signals follow always from the same
initial condition x� � ����� � � ������

Figure � a displays the force signal of an optimal controller as w�� after a
few strong signals it moves down the main diagonal� The periodic signals of ��
input controllers move mainly on elliptic curves to the center� A typical picture
is that of controller w	 as displayed in 
gure � b� The �chaotic� behavior of
controller w
 results in the compact cloud of points covering the central region as
in 
gure ���a� The return maps of ��input s�class controllers look very di�erently�
The signals of w� 
nally keep oscillating with a small amplitude along the main
diagonal �
gure ���b�� The 
nal state of controller w� is characterized by a force
signal that follows a deformed ��shaped curve around the origin �
gure ���a��
Typical for controller w
 is that the force very often goes down to zero before the

nal state of small oscillations along the main diagonal is reached �
gure ���b��
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a� b�

Figure � � First return map for the force signal of controller a�� w� and b�� w	�

a� b�

Figure ��� First return map for the force signal of controller a�� w
 and b�� w��

a� b�

Figure ��� First return map for the force signal of controller a�� w� and b�� w
�
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