4 research outputs found

    Evolutionary Spiking Neural Networks As Racing Car Controllers,"

    Get PDF
    Abstract-The Izhikevich spiking neural network model is investigated as a method to develop controllers for a simple, but not trivial, car racing game, called TORCS. The controllers are evolved using Evolutionary Programming, and the performance of the best individuals is compared with the hand-coded controller included with the Simulated Car Racing Championship API. A set of experiments using the sigmoid neural network was also conducted, to act as a benchmark for the network of Izhikevich neurons. The results are promising, indicating that this spiking neural network model can be applied to other games or control problems

    Multi-objective evolutionary algorithms of spiking neural networks

    Get PDF
    Spiking neural network (SNN) is considered as the third generation of artificial neural networks. Although there are many models of SNN, Evolving Spiking Neural Network (ESNN) is widely used in many recent research works. Among the many important issues that need to be explored in ESNN are determining the optimal pre-synaptic neurons and parameters values for a given data set. Moreover, previous studies have not investigated the performance of the multi-objective approach with ESNN. In this study, the aim is to find the optimal pre-synaptic neurons and parameter values for ESNN simultaneously by proposing several integrations between ESNN and differential evolution (DE). The proposed algorithms applied to address these problems include DE with evolving spiking neural network (DE-ESNN) and DE for parameter tuning with evolving spiking neural network (DEPT-ESNN). This study also utilized the approach of multi-objective (MOO) with ESNN for better learning structure and classification accuracy. Harmony Search (HS) and memetic approach was used to improve the performance of MOO with ESNN. Consequently, Multi- Objective Differential Evolution with Evolving Spiking Neural Network (MODE-ESNN), Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (HSMODE-ESNN) and Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) were applied to improve ESNN structure and accuracy rates. The hybrid methods were tested by using seven benchmark data sets from the machine learning repository. The performance was evaluated using different criteria such as accuracy (ACC), geometric mean (GM), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV) and average site performance (ASP) using k-fold cross validation. Evaluation analysis shows that the proposed methods demonstrated better classification performance as compared to the standard ESNN especially in the case of imbalanced data sets. The findings revealed that the MEHSMODE-ESNN method statistically outperformed all the other methods using the different data sets and evaluation criteria. It is concluded that multi objective proposed methods have been evinced as the best proposed methods for most of the data sets used in this study. The findings have proven that the proposed algorithms attained the optimal presynaptic neurons and parameters values and MOO approach was applicable for the ESNN

    Spiking neurons in 3D growing self-organising maps

    Get PDF
    In Kohonen’s Self-Organising Maps (SOM) learning, preserving the map topology to simulate the actual input features appears to be a significant process. Misinterpretation of the training samples can lead to failure in identifying the important features that may affect the outcomes generated by the SOM model. Nonetheless, it is a challenging task as most of the real problems are composed of complex and insufficient data. Spiking Neural Network (SNN) is the third generation of Artificial Neural Network (ANN), in which information can be transferred from one neuron to another using spike, processed, and trigger response as output. This study, hence, embedded spiking neurons for SOM learning in order to enhance the learning process. The proposed method was divided into five main phases. Phase 1 investigated issues related to SOM learning algorithm, while in Phase 2; datasets were collected for analyses carried out in Phase 3, wherein neural coding scheme for data representation process was implemented in the classification task. Next, in Phase 4, the spiking SOM model was designed, developed, and evaluated using classification accuracy rate and quantisation error. The outcomes showed that the proposed model had successfully attained exceptional classification accuracy rate with low quantisation error to preserve the quality of the generated map based on original input data. Lastly, in the final phase, a Spiking 3D Growing SOM is proposed to address the surface reconstruction issue by enhancing the spiking SOM using 3D map structure in SOM algorithm with a growing grid mechanism. The application of spiking neurons to enhance the performance of SOM is relevant in this study due to its ability to spike and to send a reaction when special features are identified based on its learning of the presented datasets. The study outcomes contribute to the enhancement of SOM in learning the patterns of the datasets, as well as in proposing a better tool for data analysis
    corecore