623,067 research outputs found
Evolutionary Robot Vision for People Tracking Based on Local Clustering
This paper discusses the role of evolutionary computation in visual perception for partner robots. The search of evolutionary computation has many analogies with human visual search. First of all, we discuss the analogies between the evolutionary search and human visual search. Next, we propose the concept of evolutionary robot vision, and a human tracking method based on the evolutionary robot vision. Finally, we show experimental results of the human tracking to discuss the effectiveness of our proposed method
Optimizing Neural Architecture Search using Limited GPU Time in a Dynamic Search Space: A Gene Expression Programming Approach
Efficient identification of people and objects, segmentation of regions of
interest and extraction of relevant data in images, texts, audios and videos
are evolving considerably in these past years, which deep learning methods,
combined with recent improvements in computational resources, contributed
greatly for this achievement. Although its outstanding potential, development
of efficient architectures and modules requires expert knowledge and amount of
resource time available. In this paper, we propose an evolutionary-based neural
architecture search approach for efficient discovery of convolutional models in
a dynamic search space, within only 24 GPU hours. With its efficient search
environment and phenotype representation, Gene Expression Programming is
adapted for network's cell generation. Despite having limited GPU resource time
and broad search space, our proposal achieved similar state-of-the-art to
manually-designed convolutional networks and also NAS-generated ones, even
beating similar constrained evolutionary-based NAS works. The best cells in
different runs achieved stable results, with a mean error of 2.82% in CIFAR-10
dataset (which the best model achieved an error of 2.67%) and 18.83% for
CIFAR-100 (best model with 18.16%). For ImageNet in the mobile setting, our
best model achieved top-1 and top-5 errors of 29.51% and 10.37%, respectively.
Although evolutionary-based NAS works were reported to require a considerable
amount of GPU time for architecture search, our approach obtained promising
results in little time, encouraging further experiments in evolutionary-based
NAS, for search and network representation improvements.Comment: Accepted for presentation at the IEEE Congress on Evolutionary
Computation (IEEE CEC) 202
Evolutionary testing supported by slicing and transformation
Evolutionary testing is a search based approach to the automated generation of systematic test data, in which the search is guided by the test data adequacy criterion. Two problems for evolutionary testing are the large size of the search space and structural impediments in the implementation of the program which inhibit the formulation of a suitable fitness function to guide the search. In this paper we claim that slicing can be used to narrow the search space and transformation can be applied to the problem of structural impediments. The paper presents examples of how these two techniques have been successfully employed to make evolutionary testing both more efficient and more effective
Self-adaptive exploration in evolutionary search
We address a primary question of computational as well as biological research
on evolution: How can an exploration strategy adapt in such a way as to exploit
the information gained about the problem at hand? We first introduce an
integrated formalism of evolutionary search which provides a unified view on
different specific approaches. On this basis we discuss the implications of
indirect modeling (via a ``genotype-phenotype mapping'') on the exploration
strategy. Notions such as modularity, pleiotropy and functional phenotypic
complex are discussed as implications. Then, rigorously reflecting the notion
of self-adaptability, we introduce a new definition that captures
self-adaptability of exploration: different genotypes that map to the same
phenotype may represent (also topologically) different exploration strategies;
self-adaptability requires a variation of exploration strategies along such a
``neutral space''. By this definition, the concept of neutrality becomes a
central concern of this paper. Finally, we present examples of these concepts:
For a specific grammar-type encoding, we observe a large variability of
exploration strategies for a fixed phenotype, and a self-adaptive drift towards
short representations with highly structured exploration strategy that matches
the ``problem's structure''.Comment: 24 pages, 5 figure
In search of an evolutionary coding style
In the near future, all the human genes will be identified. But understanding
the functions coded in the genes is a much harder problem. For example, by
using block entropy, one has that the DNA code is closer to a random code then
written text, which in turn is less ordered then an ordinary computer code; see
\cite{schmitt}.
Instead of saying that the DNA is badly written, using our programming
standards, we might say that it is written in a different style -- an
evolutionary style.
We will suggest a way to search for such a style in a quantified manner by
using an artificial life program, and by giving a definition of general codes
and a definition of style for such codes.Comment: 14 pages, 7 postscript figure
An Experimental Study of Adaptive Control for Evolutionary Algorithms
The balance of exploration versus exploitation (EvE) is a key issue on
evolutionary computation. In this paper we will investigate how an adaptive
controller aimed to perform Operator Selection can be used to dynamically
manage the EvE balance required by the search, showing that the search
strategies determined by this control paradigm lead to an improvement of
solution quality found by the evolutionary algorithm
- …
