Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

Evolutionary Testing Supported by Slicing and Transformation

Joachim Wegener
Harmen Sthamer
André Baresel
DaimlerChrysler AG

Mark Harman
Lin Hu Chris Fox Sebastian Danicic
Rob Hierons University of Essex ~ Goldsmiths College

Brunel University Wivenhoe Park University of London
. Research and Technology
Uxbridge Colchester New Cross, London Alt-Moabit 96a
Middlesex CO04 35Q, UK SE14 6NW, UK D-10559 Berlin
UBS 3PH, UK

Abstract Evolutionary testing is a search based approach to
the automated generation of systematic test data, in which
the search is guided by the test data adequacy criterion.

Two problems for evolutionary testing are the large size
of the search space and structural impediments in the imple-
mentation of the program which inhibit the formulation of a
suitable fitness function to guide the search.

In this paper we claim that slicing can be used to narrow
the search space and transformation can be applied to the
problem of structural impediments. The talk will present ex-
amples of how these two techniques have been successfully
employed to make evolutionary testing both more efficient
and more effective.

Evolutionary Testing

Evolutionary Testing [6] uses metaheuristic search based
techniques to find good quality test data. Test data quality
is defined by a test adequacy criterion. The fitness func-
tion drives the search by rewarding candidate solutions which
perform better according to the criterion.

Slicing to Reduce Search Space Size

Search algorithms are particularly sensitive to the size of
the search space. The size of the search space is exponential
in the number of input variables to the program, so methods
which reduce this size may produce exponential speed ups in
the search.

Clearly not all predicates in all programs depend upon
all inputs. Therefore, it makes sense to determine the input
variables which may influence a given predicate before at-
tempting to generate test data to cover it. This is essentially
a question answered by dependence analyses such a slicing
[2]. We use an approach based upon the algorithm of Danicic
and Harman [1] which produces variable dependence infor-
mation as a by product of slicing. We have built a tool which
allows the test data generator to produce variable dependence
information for predicates of interest to reduce search space
size.

Transformation to Overcome Structural Problems

Generating test data using evolutionary test data genera-

Germany

tion has been shown to be successful, but its effectiveness
is significantly reduced in the presence of programming fea-
tures such as flags, unstructured control flow and side effects.

In our work we seek transformations which simply make
the programs easier to test. The transformations are there-
fore different to conventional transformations because they
are only a means to an end not an end in themselves. Also,
the transformations need not preserve traditional notions of
equivalence, marking a radical departure from conventional
approaches to transformation.

We have experimented with flag removal [3] and plan
to experiment with side effect removal [4] and restructuring
transformations [5]. In the talk we present the initial results
of our flag removal work which show that testability trans-
formation has the potential to greatly improve test data gen-
eration ability.

References

[1] S.Danicic, M. Harman, and Y. Sivagurunathan. A parallel algo-
rithm for static program slicing. Information Processing Letters,
56(6):307-313, Dec. 1995.

[2] M. Harman and R. M. Hierons. An overview of program slic-
ing. Software Focus, 2(3):85-92, 2001.

[3] M. Harman, L. Hu, R. Hierons, A. Baresel, and H. Sthamer. Im-
proving evolutionary testing by flag removal (‘best at GECCO’
award). In GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1359-1366, New
York, 9-13 July 2002. Morgan Kaufmann Publishers.

[4] M. Harman, L. Hu, X. Zhang, and M. Munro. Side-effect re-
moval transformation. In 9** IEEE International Workshop on
Program Comprehension (IWPC’01), pages 310-319, Toronto,
Canada, May 2001. IEEE Computer Society Press, Los Alami-
tos, California, USA.

[5] L. Ramshaw. Eliminating goto’s while preserving program
structure. Journal of the ACM, 35(4):893-920, 1988.

[6] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test envi-
ronment for automatic structural testing. Information and Soft-
ware Technology Special Issue on Software Engineering using
Metaheuristic Innovative Algorithms, 43(14):841-854, 2001.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Software Maintenance (ICSM’'02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 09:07 from IEEE Xplore. Restrictions apply.

https://core.ac.uk/display/335986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

