9 research outputs found

    Input shaping-based control schemes for a three dimensional gantry crane

    Get PDF
    The motion induced sway of oscillatory systems such as gantry cranes may decrease the efficiency of production lines. In this thesis, modelling and development of input shaping-based control schemes for a three dimensional (3D) lab-scaled gantry crane are proposed. Several input shaping schemes are investigated in open and closed-loop systems. The controller performances are investigated in terms of trolley position and sway responses of the 3D crane. Firstly, a new distributed Delay Zero Vibration (DZV) shaper is implemented and compared with Zero Vibration (ZV) shaper and Zero Vibration Derivative (ZVD) shaper. Simulation and experimental results show that all the shapers are able to reduce payload sway significantly while maintaining desired position response specifications. Robustness tests with ±20% error in natural frequency show that DZV shaper exhibits asymmetric robustness behaviour as compared to ZV and ZVD shapers. Secondly, as analytical technique could only provide good performance for linear systems, meta-heuristic based input shaper is proposed to reduce sway of a gantry crane which is a nonlinear system. The results show that designing meta-heuristic-based input shapers provides 30% to 50% improvement as compared to the analytical-based shapers. Subsequently, a particle swarm optimization based optimal performance control scheme is developed in closed-loop system. Simulation and experimental results demonstrate that the controller gives zero overshoot with 60% and 20% improvements in settling time and integrated absolute error value of position response respectively, as compared to a specific designed PID-PID anti swing controller for the lab-scaled gantry crane. It is found that crane control with changing cable length is still a problem to be solved. An adaptive input shaping control scheme that can adapt to variation of cable’s length is developed. Simulation with real crane dimensions and experimental results verify that the controller provides 50% reduction in payload sway for different operational commands with hoisting as compared to the average travel length approach

    Proceeding Of Mechanical Engineering Research Day 2015 (MERD’15)

    Get PDF
    This Open Access e-Proceeding contains 74 selected papers from the Mechanical Engineering Research Day 2015 (MERD’15) event, which is held in Kampus Teknologi, Universiti Teknikal Malaysia Melaka (UTeM) - Melaka, Malaysia, on 31 March 2015. The theme chosen for this event is ‘Pioneering Future Discovery’. The response for MERD’15 is overwhelming as the technical committees have received more than 90 papers from various areas of mechanical engineering. From the total number of submissions, the technical committees have selected 74 papers to be included in this proceeding. The selected papers are grouped into 12 categories: Advanced Materials Processing; Automotive Engineering; Computational Modeling and Analysis & CAD/CAE; Energy Management & Fuels and Lubricants; Hydraulics and Pneumatics & Mechanical Control; Mechanical Design and Optimization; Noise, Vibration and Harshness; Non-Destructive Testing & Structural Mechanics; Surface Engineering and Coatings; Others Related Topic. With the large number of submissions from the researchers in other faculties, the event has achieved its main objective which is to bring together educators, researchers and practitioners to share their findings and perhaps sustaining the research culture in the university. The topics of MERD’15 are based on a combination of advanced research methodologies, application technologies and review approaches. As the editor-in-chief, we would like to express our gratitude to the editorial board members for their tireless effort in compiling and reviewing the selected papers for this proceeding. We would also like to extend our great appreciation to the members of the Publication Committee and Secretariat for their excellent cooperation in preparing the proceedings of MERD’15

    Evolutionary optimization of interval mathematics-based design of a TSK fuzzy controller for anti-sway crane control

    No full text
    A hybrid method combining an evolutionary search strategy, interval mathematics and pole assignment-based closed-loop control synthesis is proposed to design a robust TSK fuzzy controller. The design objective is to minimize the number of linear controllers associated with rule conclusions and tune the triangular-shaped membership function parameters of a fuzzy controller to satisfy stability and desired dynamic performances in the presence of system parameter variation. The robust performance objective function is derived based on an interval Diophantine equation. Thus, the objective of a fuzzy logic-based control scheme is to place all the closed-loop control system characteristic polynomial coefficients within desired intervals. The reproduction process in the proposed Evolutionary Algorithm (EA) is based on the arithmetical crossover, uniform and non-uniform mutation along with gene deletion/insertion mutation ensuring a diversity of genomes sizes, as well as a diversity in the parameter space of membership functions. The proposed algorithm was implemented to design a fuzzy logic-based anti-sway crane control system taking into consideration the rope length and the mass of a payload variation. The results of experiments conducted using the EA for different conditions assumed for system parameter intervals and desired closed-loop system performances are compared with results achieved using the iterative procedure which is also described in the paper

    Massachusetts Domestic and Foreign Corporations Subject to an Excise: For the Use of Assessors (2004)

    Get PDF
    International audienc
    corecore