333,447 research outputs found
Rewriting Human History and Empowering Indigenous Communities with Genome Editing Tools.
Appropriate empirical-based evidence and detailed theoretical considerations should be used for evolutionary explanations of phenotypic variation observed in the field of human population genetics (especially Indigenous populations). Investigators within the population genetics community frequently overlook the importance of these criteria when associating observed phenotypic variation with evolutionary explanations. A functional investigation of population-specific variation using cutting-edge genome editing tools has the potential to empower the population genetics community by holding "just-so" evolutionary explanations accountable. Here, we detail currently available precision genome editing tools and methods, with a particular emphasis on base editing, that can be applied to functionally investigate population-specific point mutations. We use the recent identification of thrifty mutations in the CREBRF gene as an example of the current dire need for an alliance between the fields of population genetics and genome editing
The Morphogenesis Of Evolutionary Developmental Biology
The early studies of evolutionary developmental biology (Evo-Devo) come from several sources. Tributaries flowing into Evo-Devo came from such disciplines as embryology, developmental genetics, evolutionary biology, ecology, paleontology, systematics, medical embryology and mathematical modeling. This essay will trace one of the major pathways, that from evolutionary embryology to Evo-Devo and it will show the interactions of this pathway with two other sources of Evo-Devo: ecological developmental biology and medical developmental biology. Together, these three fields are forming a more inclusive evolutionary developmental biology that is revitalizing and providing answers to old and important questions involving the formation of biodiversity on Earth. The phenotype of Evo-Devo is limited by internal constraints on what could be known given the methods and equipment of the time and it has been framed by external factors that include both academic and global politics
The Evolution of Diversity
Since the beginning of time, the pre-biological and the biological world have seen a steady increase in complexity of form and function based on a process of combination and re-combination.
The current modern synthesis of evolution known as the neo-Darwinian theory emphasises population genetics and does not explain satisfactorily all other occurrences of evolutionary novelty.
The authors suggest that symbiosis and hybridisation and the more obscure processes such as polyploidy, chimerism and lateral transfer are mostly overlooked and not featured sufficiently within evolutionary theory. They suggest, therefore, a revision of the existing theory including its language, to accommodate the scientific findings of recent decades
Evolutionary Multiplayer Games
Evolutionary game theory has become one of the most diverse and far reaching
theories in biology. Applications of this theory range from cell dynamics to
social evolution. However, many applications make it clear that inherent
non-linearities of natural systems need to be taken into account. One way of
introducing such non-linearities into evolutionary games is by the inclusion of
multiple players. An example is of social dilemmas, where group benefits could
e.g.\ increase less than linear with the number of cooperators. Such
multiplayer games can be introduced in all the fields where evolutionary game
theory is already well established. However, the inclusion of non-linearities
can help to advance the analysis of systems which are known to be complex, e.g.
in the case of non-Mendelian inheritance. We review the diachronic theory and
applications of multiplayer evolutionary games and present the current state of
the field. Our aim is a summary of the theoretical results from well-mixed
populations in infinite as well as finite populations. We also discuss examples
from three fields where the theory has been successfully applied, ecology,
social sciences and population genetics. In closing, we probe certain future
directions which can be explored using the complexity of multiplayer games
while preserving the promise of simplicity of evolutionary games.Comment: 14 pages, 2 figures, review pape
Technologically modified genes in natural populations
Current theories of evolutionary and ecological genetics cannot be used for general statements on risk assessment
of gene technology. In a simplifying model, the genes which are transferred from artificial populations are treated
like mutations in the natural populations. It is shown how fast such mutants can become fixed depending on the
transfer rate, the population size and the selection coefficient. However, our incomplete knowledge about living
systems still does not allow reliable risk assessments because of our incomplete understanding of the underlying
principles
BEAST: Bayesian evolutionary analysis by sampling trees
<p>Abstract</p> <p>Background</p> <p>The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented.</p> <p>Results</p> <p>BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at <url>http://beast-mcmc.googlecode.com/</url> under the GNU LGPL license.</p> <p>Conclusion</p> <p>BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.</p
The contribution of statistical physics to evolutionary biology
Evolutionary biology shares many concepts with statistical physics: both deal
with populations, whether of molecules or organisms, and both seek to simplify
evolution in very many dimensions. Often, methodologies have undergone parallel
and independent development, as with stochastic methods in population genetics.
We discuss aspects of population genetics that have embraced methods from
physics: amongst others, non-equilibrium statistical mechanics, travelling
waves, and Monte-Carlo methods have been used to study polygenic evolution,
rates of adaptation, and range expansions. These applications indicate that
evolutionary biology can further benefit from interactions with other areas of
statistical physics, for example, by following the distribution of paths taken
by a population through time.Comment: 18 pages, 3 figures, glossary. Accepted in Trend in Ecology and
Evolution (to appear in print in August 2011
- …
