89,920 research outputs found

    Evolutionary design of decision-tree algorithms tailored to microarray gene expression data sets

    Get PDF
    Decision-tree induction algorithms are widely used in machine learning applications in which the goal is to extract knowledge from data and present it in a graphically intuitive way. The most successful strategy for inducing decision trees is the greedy top-down recursive approach, which has been continuously improved by researchers over the past 40 years. In this paper, we propose a paradigm shift in the research of decision trees: instead of proposing a new manually designed method for inducing decision trees, we propose automatically designing decision-tree induction algorithms tailored to a specific type of classification data set (or application domain). Following recent breakthroughs in the automatic design of machine learning algorithms, we propose a hyper-heuristic evolutionary algorithm called hyper-heuristic evolutionary algorithm for designing decision-tree algorithms (HEAD-DT) that evolves design components of top-down decision-tree induction algorithms. By the end of the evolution, we expect HEAD-DT to generate a new and possibly better decision-tree algorithm for a given application domain. We perform extensive experiments in 35 real-world microarray gene expression data sets to assess the performance of HEAD-DT, and compare it with very well known decision-tree algorithms such as C4.5, CART, and REPTree. Results show that HEAD-DT is capable of generating algorithms that significantly outperform the baseline manually designed decision-tree algorithms regarding predictive accuracy and F-measure

    Application of multiobjective genetic programming to the design of robot failure recognition systems

    Get PDF
    We present an evolutionary approach using multiobjective genetic programming (MOGP) to derive optimal feature extraction preprocessing stages for robot failure detection. This data-driven machine learning method is compared both with conventional (nonevolutionary) classifiers and a set of domain-dependent feature extraction methods. We conclude MOGP is an effective and practical design method for failure recognition systems with enhanced recognition accuracy over conventional classifiers, independent of domain knowledge

    A generic optimising feature extraction method using multiobjective genetic programming

    Get PDF
    In this paper, we present a generic, optimising feature extraction method using multiobjective genetic programming. We re-examine the feature extraction problem and show that effective feature extraction can significantly enhance the performance of pattern recognition systems with simple classifiers. A framework is presented to evolve optimised feature extractors that transform an input pattern space into a decision space in which maximal class separability is obtained. We have applied this method to real world datasets from the UCI Machine Learning and StatLog databases to verify our approach and compare our proposed method with other reported results. We conclude that our algorithm is able to produce classifiers of superior (or equivalent) performance to the conventional classifiers examined, suggesting removal of the need to exhaustively evaluate a large family of conventional classifiers on any new problem. (C) 2010 Elsevier B.V. All rights reserved

    Automating biomedical data science through tree-based pipeline optimization

    Full text link
    Over the past decade, data science and machine learning has grown from a mysterious art form to a staple tool across a variety of fields in academia, business, and government. In this paper, we introduce the concept of tree-based pipeline optimization for automating one of the most tedious parts of machine learning---pipeline design. We implement a Tree-based Pipeline Optimization Tool (TPOT) and demonstrate its effectiveness on a series of simulated and real-world genetic data sets. In particular, we show that TPOT can build machine learning pipelines that achieve competitive classification accuracy and discover novel pipeline operators---such as synthetic feature constructors---that significantly improve classification accuracy on these data sets. We also highlight the current challenges to pipeline optimization, such as the tendency to produce pipelines that overfit the data, and suggest future research paths to overcome these challenges. As such, this work represents an early step toward fully automating machine learning pipeline design.Comment: 16 pages, 5 figures, to appear in EvoBIO 2016 proceeding

    Multi-agent evolutionary systems for the generation of complex virtual worlds

    Full text link
    Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex models are a requirement for the successful delivery of many scenes and environments. While workflows such as rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm (IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer's intent through interaction, and encourages playful discovery
    • …
    corecore