22,719 research outputs found

    Formation of machine groups and part families in cellular manufacturing systems using a correlation analysis approach

    Get PDF
    The important step in the design of a cellular manufacturing (CM) system is to identify the part families and machine groups and consequently to form manufacturing cells. The scope of this article is to formulate a multivariate approach based on a correlation analysis for solving cell formation problem. The proposed approach is carried out in three phases. In the first phase, the correlation matrix is used as similarity coefficient matrix. In the second phase, Principal Component Analysis (PCA) is applied to find the eigenvalues and eigenvectors on the correlation similarity matrix. A scatter plot analysis as a cluster analysis is applied to make simultaneously machine groups and part families while maximizing correlation between elements. In the third stage, an algorithm is improved to assign exceptional machines and exceptional parts using respectively angle measure and Euclidian distance. The proposed approach is also applied to the general Group Technology (GT) problem in which exceptional machines and part are considered. Furthermore, the proposed approach has the flexibility to consider the number of cells as a dependent or independent variable. Two numerical examples for the design of cell structures are provided in order to illustrate the three phases of proposed approach. The results of a comparative study based on multiple performance criteria show that the present approach is very effective, efficient and practical.cellular manufacturing; cell formation; correlation matrix; Principal Component Analysis; exceptional machines and parts

    Machine-Part cell formation through visual decipherable clustering of Self Organizing Map

    Full text link
    Machine-part cell formation is used in cellular manufacturing in order to process a large variety, quality, lower work in process levels, reducing manufacturing lead-time and customer response time while retaining flexibility for new products. This paper presents a new and novel approach for obtaining machine cells and part families. In the cellular manufacturing the fundamental problem is the formation of part families and machine cells. The present paper deals with the Self Organising Map (SOM) method an unsupervised learning algorithm in Artificial Intelligence, and has been used as a visually decipherable clustering tool of machine-part cell formation. The objective of the paper is to cluster the binary machine-part matrix through visually decipherable cluster of SOM color-coding and labelling via the SOM map nodes in such a way that the part families are processed in that machine cells. The Umatrix, component plane, principal component projection, scatter plot and histogram of SOM have been reported in the present work for the successful visualization of the machine-part cell formation. Computational result with the proposed algorithm on a set of group technology problems available in the literature is also presented. The proposed SOM approach produced solutions with a grouping efficacy that is at least as good as any results earlier reported in the literature and improved the grouping efficacy for 70% of the problems and found immensely useful to both industry practitioners and researchers.Comment: 18 pages,3 table, 4 figure

    Integrated cellular manufacturing system design : an evolutionary algorithm approach

    Get PDF
    Cellular manufacturing system design has received much attention for the past three decades. The design process involves decisions on (i) cell formation, (ii) cell layout, and (iii) layout of cells on the shop floor. These decisions should be addressed jointly, if full benefits of cellular manufacturing are to be realised. However, due to the complexity of the problem, most researchers addressed these phases sequentially. In this paper, we propose an enhanced evolutionary algorithm to jointly address cell formation and layout problems, based on sequence data. The approach compares favourably to well-known heuristics and performed well on published data sets, providing improved solutions

    Computational Evolutionary Embryogeny

    Get PDF
    Evolutionary and developmental processes are used to evolve the configurations of 3-D structures in silico to achieve desired performances. Natural systems utilize the combination of both evolution and development processes to produce remarkable performance and diversity. However, this approach has not yet been applied extensively to the design of continuous 3-D load-supporting structures. Beginning with a single artificial cell containing information analogous to a DNA sequence, a structure is grown according to the rules encoded in the sequence. Each artificial cell in the structure contains the same sequence of growth and development rules, and each artificial cell is an element in a finite element mesh representing the structure of the mature individual. Rule sequences are evolved over many generations through selection and survival of individuals in a population. Modularity and symmetry are visible in nearly every natural and engineered structure. An understanding of the evolution and expression of symmetry and modularity is emerging from recent biological research. Initial evidence of these attributes is present in the phenotypes that are developed from the artificial evolution, although neither characteristic is imposed nor selected-for directly. The computational evolutionary development approach presented here shows promise for synthesizing novel configurations of high-performance systems. The approach may advance the system design to a new paradigm, where current design strategies have difficulty producing useful solutions

    Macro-approach of cell formation problem with consideration of machining sequence

    Get PDF
    Cellular Manufacturing System (CMS) which is based on the concept of Group Technology (GT) has been recognized as an efficient and effective way to improve the productivity in the factory. In recent years, there has been much effort done for continuing to improve CMS. Most researches concentrated on distinguishing the part families and machine cells either simultaneously or individually by considering of minimizing intercellular and intracellular part movements. However, fewer researches have studied the impact of the sequencing of machine cells. In light of this, the main aim of this present work is to study the impact of the sequencing of allocating the machine cells in minimizing intercellular part movement. The problem scope, which is also called as machine-part grouping problem (MPGP) together with the background of cell layout problem (CLP), has been identified. A mathematical model is formulated and part incidence matrix with operational sequence is often used. Since MPGP has been proved as an NP complete, genetic algorithm (GA) is employed as cell formation algorithms in solving this problem. © 2004 IEEE.published_or_final_versio
    corecore