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Abstract 

 
Cellular manufacturing system design has received much attention for the past three decades. The design process 
involves decisions on (i) cell formation, (ii) cell layout, and (iii) layout of cells on the shop floor. These decisions 
should be addressed jointly, if full benefits of cellular manufacturing are to be realised. However, due to the 
complexity of the problem, most researchers addressed these phases sequentially. In this paper, we propose an 
enhanced evolutionary algorithm to jointly address cell formation and layout problems, based on sequence data. The 
approach compares favourably to well-known heuristics and performed well on published data sets, providing 
improved solutions. 
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1. Introduction 
Cellular Manufacturing System (CMS) is an application of the concepts of group technology aimed at improving 
productivity and flexibility in modern manufacturing systems (Mahdavi et al., 2010; Yin et al., 2005; Sarker and Xu, 
1998). It requires decomposition of a manufacturing system into autonomous manufacturing cells so as to enhance 
tooling, material handling, scheduling and shop-floor control. Part families with similar processes or design features 
are grouped into machine cells so that each part family can possibly be processed entirely in a single cell. Machine 
layout within each cell is crucial in order to improve efficiency and effectiveness of the overall production system. 
Setup times, work-in-process inventories, and throughput times can be reduced significantly. CMS design and layout 
involves three main decisions: (i) cell formation: grouping of machines which can operate on a product family, (ii) 
intra-cell layout: layout machine within each cell, (iii) inter-cell layout - layout of cells with respect to one another, 
and (iv) group scheduling: scheduling of parts for production. Ideally, these decisions should be addressed 
simultaneously so as to obtain the best possible results (Mahdavi and Mahadevan, 2008; Kaebernick and Bazargan-
Lari, 1996). However, due to the complexity of the decision problem and the limitations of conventional approaches, 
earlier studies focused on these decisions sequentially (Mahdavi et al., 2010; Yin and Yasuda, 2004; Onwubolu and 
Mutingi, 2001). Major objectives considered in assessing the quality of solutions include inter-cell and intra-cell 
movements, utilization and material handling costs. 
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Previous studies have relied on the use of zero-one machine-component incidence matrix as input data for the Cell 
Formation Problem (CFP). Sequence data, which shows job flow patterns, provides vital additional information for 
CMS design as well as machine layout within a cell. However, a few researchers have recently made efforts to use 
sequence data for cell layout (Yin et al., 2005; Won and Lee, 2001; Jayaswal and Adil, 2004). Nevertheless, the cell 
formation and layout problem are often treated independently. In an attempt to jointly address the cell formation and 
layout problem, various researchers and practitioners used a sequential approach where cells are formed first, 
followed by intra-cell layout construction. Since the final solution largely depends on the initial cell formation, the 
quality of the final solution is compromised. The basic CFP is NP-complete, meaning that it has no known 
polynomial time algorithm due to its combinatorial nature (Kumar et al., 1986). It follows that the integrated cell 
formation and layout problem is also NP-complete. Therefore, the use of heuristic approaches such as simulated 
annealing (Ji-Yang, 2010), tabu search (Wu et al., 2009) and evolutionary algorithms (Gan and Zheng, 2011) is 
quite appropriate. In this study, an enhanced Evolutionary Algorithm (EA) is proposed for integrated cell formation 
and layout design based on sequence data. The approach utilizes sequence data to identify machine cells as well as 
machine layout within each cell. In view of this, the major objectives for this paper are: 
 
(1) To develop an EA for solving the integrated CMS design and layout problem using sequence data. 
(2) To develop relevant performance metrics to address the integrated cell formation and layout problem. 
 
The next section gives a description of the joint cell formation and layout problem. Section 3 provides a brief 
background to EA, followed by an outline of the proposed EA scheme for cell formation and layout in Section 4. 
Results and discussions are presented in Section 5. Section 6 concludes the paper. 
 
2. Problem description: cell formation and layout 
Cell formation in CMS involves grouping of machines which can operate on a product family with similar 
manufacturing processes and features such that little or no inter-cell movement of products is involved. On the other 
hand, cell layout problem involves layout machine within each cell and layout of cells with respect to one another. 
The overall objective of cell formation is to gain the advantages of group technology. In assessing the quality of 
solutions, common objectives considered are (i) minimization of inter-cell movements, (ii) minimization of intra-cell 
movements, (iii) maximization of utilization, (iv) minimization of material handling costs, and (v) minimization cell 
work-load imbalances. The joint cell formation and layout problem is a new approach that seeks to identify 
manufacturing cells and the layout (sequence) of machines in the cells in an integrated manner. This approach seeks 
to avoid compromising the quality of solutions with respect cell formation and cell layout objectives.  
 
3. Evolutionary Algorithms 
Evolutionary algorithms are search methods inspired by the philosophy of natural selection and survival of the fittest 
(Back, 1996). Unlike traditional optimization techniques, EA searches from a population of solutions, rather than 
from a single point. Iterations involves a competitive selection that weeds out poor solutions. Solutions with high 
fitness are recombined with other solutions by swapping parts of a solution with another. Additionally, solutions are 
mutated by making small changes to elements of the solutions. Recombination and mutation are used to generate 
new solutions that are biased towards visited regions of space with good solutions. EA methodologies have been 
applied extensively in combinatorial problems in engineering, telecommunications, sciences, agriculture, business, 
and manufacturing (Goldberg, 1989). The method integrates the elements of stochastic and direct search to obtain 
optimal (or near-optimal) solutions within reasonable computation time. The general EA scheme is shown in Figure 
1. 
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Figure 1: The general framework of EA as a flow chart 

 
EAs offer unique advantages over other stochastic searches, including implicit parallelism, independence from 
gradient information, and flexibility to hybridization with other heuristics. Some early applications on the cell 
formation problem are found in (Venugopal and Narendran, 1992; Hsu and Su, 1998). Significant improvements to 
EAs have been made for specific problem areas. Realizing some shortcomings of classical genetic algorithms (GAs) 
for grouping problems, Falkenauer (1992) introduced group genetic algorithm (GGA) specifically designed to 
handle special structures of grouping/clustering problems. Some applications of GGA exist in literature (James et 
al., 2010; Filho and Tiberti, 2006). Based on GGA principles, an enhanced EA approach is proposed for the joint 
machine cell formation and layout problem. 
 
4. EA approach for cell formation and layout 
The proposed EA approach integrates genetic features inherent in grouping problems with the power of local search 
in order to refine new chromosomes generated. EA is a favourable approach compared to other heuristic and 
conventional approaches. The EA design for the joint cell design and layout problem is presented based on its six 
main elements: 
 

(1) Objective function, or fitness function 
(2) Chromosome encoding scheme. 
(3) Generation of initial population. 
(4) Selection and recombination strategies. 
(5) Genetic operators: crossover, mutation and inversion. 
(6) Diversification. 

 
4.1 Objective/fitness function formulations 
From a cell formation viewpoint, the presence of exceptional parts and voids should be minimized. In layout design, 
adjacency of machines in a cell is key as it can reduce material handling costs significantly (Grefenstette, 1987). 
From a production planning viewpoint, the sequence in which machines are placed in cells often creates unwanted 
reverse flows. Consider a typical solution for a simple cell formation problem in Table 1. A cell with machines 1 
and 2 has two possible sequences (layouts), that is, (1, 2) and (2, 1). While cell layout (1, 2) has three consecutive 
forward flows due to part 1, 3 and 7, layout (2,1) has only two. Therefore, layout (1, 2) is preferred.  
 

Table 1: A typical solution for a cell formation problem 
 

Machines    Parts       
 2 1 4 5 3 7 6 8 9 11 10  

2 1 2 3 2 2 2       
1 2 1 1 3 1 1       
5       1 1 1 2 1  
3   2 1   3 2 2 3 2  
4       2 3 3 1 3  

 

Parents 

Offspring 

Population 

Parent selection 

Survivor selection 

Recombination 

Mutation 

Initialization 

Termination 
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An ideal objective function must capture and evaluate the effects of the sequence of machines within cells. One 
basic way of evaluating the fitness of a cell layout is to express the objective function in terms of number of 
consecutive forward flows of parts. In this connection, Mahdavi and Mahadevan (2008) proposed two performance 
indices: (i) cell flow index (CFI) and (ii) overall flow index (OFI). The following notation is used in this model; 
 
n: number of parts in the system 
m: number of machines in the system 
nc: number of parts in cell c 
mc: number of machines in cell c 
vc: number of voids in cell c 
Nfc: number of consecutive forward flows within cell c 
Sjk: machine-component matrix [sjk]; sjk = 1 if part k visits machine j, and 0 otherwise 
 
To determine the cell flow and overall flow performance measures, the total number of operations and the 
consecutive flows between a pair of machines are calculated. The total number of flows Nflow is: 

)( max nsN
k

jkjflow −=∑       (1) 

 
Therefore, the total number of flows in each cell c is determined be the following expression; 

cccctc nvmnN −−= )(        (2) 
 
In addition to the above, the cell flow index for cell c, CFIc, is the ratio of the number of consecutive forward flows 
to the total number of flows within the cell; 

tc

fc

N
N

=cCFI        (3) 

 
The average cell flow index (ACFI) is the weighted average of the CFIs. This measure is given by F1as follows; 

( ) ∑⋅=
c

cnnF cCFI11       (4) 

 
The overall cell flow index (OFI) defines the ratio of the sum of consecutive forward flows in all the cells to the 
total number of the flows required to process all the parts. OFI is defined by F2 as; 

( ) ∑⋅=
c

fcnflow NNF 12       (5) 

 
In this analysis, as the number of voids in the cell decreases and/or the number of consecutive forward flows 
increase, CFI increases. It follows that ACFI represents the solution quality with respect to the number of voids and 
the intra-cell moves. While ACFI points to the intra-cell movements, the OFI measures inter-cell movements. As 
such, a combination of these performance measures ensures that the cell formation and layout are addressed jointly. 
Let w1 and w2 denote the weights of F1 and F2, respectively. Then, the weighted objective function is; 

2211 FwFwF +=        (6) 
 
4.2 Chromosome representation 
EA’s performance strongly relies on the chromosome (string) coding scheme used. Most coding schemes in 
literature use strings of integer numbers where the position of the number represents the machine and the value of 
the number identifies the cell number. A typical chromosome [2 3 1 1 2 3 1 1], containing 8 machines represents a 
manufacturing system with 3 cells: machines 1, 5, 6 and 8 are in cell 1, machines 2 and 3 are in cell 2, and machines 
4, 7, 9 occupy cell 3. The proposed EA algorithm uses an improved coding scheme that utilizes a group structure for 
each feasible string based on three code schemes (see Figure 2), similar to the one proposed by Filho and 
Tibert(2006). The first code scheme, code 1, is a string of size m, where m represents is the number of machines in 



258 

 

the system. The second is a group structure upon which the genetic operators act. The third denotes the last position 
of each group/cell. 
 

 
 

Figure 2: Chromosome representation 
 
Code 3 shows that the first four machines (genes) are in cell 1, the next two genes are in cell 2, and the last two 
machines are in cell 3. In this EA implementation, several enhanced features are developed in of objective/fitness 
functions formulation, genetic operators, chromosome repair and other genetic strategies. 
 
4.3 Initial population 
An initial population of the desired size (popsize), is generated randomly. Consider a typical problem with m 
machines, where the desired number of cells is v. Assuming each cell comprises at least two machines, the initial 
population is created according to the following procedure: 
 
Repeat 

1. For each cell j (j=1,...,v), randomly select two machines from the set of machines. 
2. For the remaining (n-2j) unassigned machines, randomly assign a machine to a cell. 
3. Encode the chromosome using code 1 and add to the initial population. 

Until (population size popsize is achieved). 
 
In every EA application, the goal is to minimize some cost function which is usually mapped to a score function that 
evaluates the generated chromosomes. A mapping procedure initially suggested by Goldberg (1989) is applied; 



 <−

=
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i
i
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where, g(t) is the objective function of a chromosome and fmax is the maximum objective function in the population. 
 
4.4 Selection strategy 
A number of selection strategies have been suggested by Goldberg (1989), including deterministic sampling, 
remainder stochastic sampling with/without replacement, stochastic tournament, and stochastic sampling 
with/without replacement. The remainder stochastic sampling without replacement has been found to be the most 
effective and is applied in this work. In this strategy, each chromosome i is selected and stored in the mating pool 
according to the expected count ei calculated as, 

( )∑
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= s

i
i

i
i
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f
e
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      (8) 

 
Each chromosome receives copies equal to the integer part of ei, while the fractional part is treated as success 
probability of obtaining an additional copy of each chromosome. 
 
4.5 Genetic operators 
This section outlines the design issues relating to genetic operators for the proposed EA for the cell design and 
layout problem are defined. Unique crossover, mutation and inversion strategies are developed. 
 
4.5.1 Crossover 

[ 1  5  6  8 | 2  3 | 4  7]  ( 4  6  8 ) 

cell 1        cell 2       cell 3 
 
 

[2  3  1  1  2  3  1  1] 

code 1 code 2 code 3 
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Crossover is a probabilistic evolutionary mechanism which seeks to mate selected chromosomes in order to produce 
a pool of new offspring, called selection pool (spool). It allows the algorithm to generate new solutions and to 
explore unvisited regions in the solution space. The proposed group crossover operator exchanges groups of genes 
of selected chromosomes (see Figure 3). Crossover operations occur with probability pcross until the desired pool 
size, pcrosspopsizepoolsize ⋅= , is obtained. The procedure for the group crossover operator is: 
 
Repeat 

1. Generate a random integer number between 1 and (v-1), where v is the number of cells. The generated number 
defines the crossover point. 

2. Swap the groups to the right of the crossover point to generate two offspring. 
3. Repair the offspring by eliminating any duplicated machines and introducing missing machines. 

Until (selection poolsize is achieved). 
 

 
Figure 3: Crossover operator 

 
After crossover, some machines may appear in more than one cell, and some may be missing. Such offspring should 
be repaired. The repair procedure identifies duplicated machines and eliminates those to the left of the crossover 
point. Missing machines are inserted into the cell with the least number of nodes (see Figure 4). Thus, the group 
representation scheme enhances the crossover operator by taking advantage of the group structure. 

 
Figure 4: Chromosome repair procedure 

 
4.5.2 Mutation 
The mutation operator is applied to every new chromosome with probability pmutation in order to maintain diversity 
of the population and avoid premature convergence. Two mutation operators are proposed, namely swap mutation 
and shift mutation. Swap mutation operates by exchanging genes between two randomly chosen groups in a 
chromosome (see Figure 5.). Its general procedure can be summarized as follows: 
 
1. Randomly select two integer numbers from the set {1, 2,..., v}, where v is the number of cells or groups. 
2. Randomly choose a gene from each group. 
3. Swap the selected genes, exchanging their values. 

Figure 5: Swap mutation 
 

Before repair:  [ 5   1   6   8 | 2   3   6   8 |  7   9 ] 

[  5   1         | 2   3   6   8 |  7   9 ] 

After repair:  [   1   5   4   | 2   3   6   8 |  7   9 ] 

eliminate 6, 8 

introduce 4 

[ 5  1  6  8 | 3  7 | 2  4  9 ] 

[ 1  4  5 | 2  3  6  8 | 7  9 ] 

[ 5  1  6  8 | 2  3  6  8 | 7  9 ] 

[ 1  4  5 | 3  7 | 2  4  9 ] 

Swap Crossover point 

Parent chromosomes:  Offspring chromosomes: 

 

Offspring chromosome : [ 1  5  4 | 2  3  6  8 | 7  9] 
Select group or cell  : 1 and 3  
Select genes or machines : Genes 4 and 7 
Mutated offspring  : [ 1  5  7 | 2  3  6  8 | 4  9] 

Swap 4, 7 
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The shift mutation operator works by shifting the frontier between two adjacent groups by one step either to the 
right or to the left, as shown in Figure 6. Essentially, the number of nodes is increased in one group and 
simultaneously decreased in the other. The procedure for the mutation operator is summarized thus; 
 
1. Generate a random integer number between 1 and (v-1). Let this number represent the chosen frontier. 
2. Randomly choose the direction of shift: Right or Left. 
3. Shift the frontier in the selected direction, thereby moving one node between adjacent groups. 
 

 
Figure 6: Shift mutation operator 

 
4.5.3 Inversion operator 
In order to curb premature convergence of the population, an inversion is applied, at a very low probability, on 
chromosomes selected for crossover operation. Basically, the inversion strategy operates by rearranging the groups 
in the reverse order, for instance, the order of cells (1, 2, 3) is transformed to cells (3, 2, 1) as illustrated below. 
 
Chromosome before inversion : [ 1  5  6  8 | 3  7 | 2  4  9] 

Chromosome after inversion : [ 2  4  9 | 3  7 | 1  5 6  8] 
 
4.5.4 Diversification and convergence 
As iterations proceed, the population converges to a particular solution. Rapid loss of diversity and premature 
convergence may occur before an optimal solution is obtained. To track the diversity of the solution space, 
Grefenstette (1987) proposed an entropic measure Hi in a population of candidates. For each machine i, Hi is 
defined; 

∑
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⋅
=

m

j
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Here, nij is the number of strings in which machine i is assigned position j in the current population, p is the solution 
space size, and m is the number of machines. Divergence H is then calculated as; 

∑
=

=
m

i
i mHH

1

       (10) 

 
As iterations advance, the divergence parameter H approaches zero. Therefore, the diversity of the solution space 
can be monitored and controlled by applying the inversion operator to improve diversity to a preset value. In order 
to prevent loss of good solutions, a fraction (e.g., 0.2) of best performing solutions from the undiversified population 
is preserved. Candidate solutions from the diversified population are compared with those from the diversified 
population. The best performing candidates are taken into the next generation. 
 
4.6 The EA implementation 
The structure of the proposed EA for solving the integrated cellular manufacturing system problem was developed 
incorporating the group operators described in previous sections. The overall EA structure is now summarised; 
 
Step 1. Input: initial data input:  

(i) Select the typical initial EA parameter values as shown in Table 2. 
(ii) Input the manufacturing data, with sequence data. 

Step 2. Initial population: create randomly, an initial population, called oldpop. 
Repeat 
Step 3. Selection: Select chromosomes using stochastic sampling without replacement. 

Offspring chromosome  : [ 1  5  4 | 2  3  6  8 | 7  9 ] 
Select frontier, rand (1, 2) :  1 
Select direction   : Right 
Mutated offspring  : [ 1  5  4  2 | 3  6  8 | 7  9 ] 

Shift frontier 
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(i) Evaluate strings by objective function, fitness function and expected count. 
(ii) Create a temporal population, temppop, using integer parts of expected count, and fractional parts as 

success probabilities. 
Step 4. Crossover/recombination: Apply the group crossover to temppop to create a selection pool, spool. 

(i) Select two candidates for crossover using remainder selection without replacement.  
(ii) Apply crossover operator to the two strings; if successful, apply inversion operator, otherwise go to step 5. 
(iii) Apply repair mechanism if necessary. 

Step 5. Mutation: Apply mutation operators to the two offspring and move them to new population. 
Step 6. Replacement strategy: Replace the less performing strings in old population with selection pool strings. 

(i) Compare corresponding chromosomes successively in selection pool and old population. 
(ii) Take the one that fares better in each comparison. 
(iii) For the rest of the offspring, select with probability 0.54. 

 Step 6. Diversification: Diversify population using the inversion operator if diversity falls below a minimum, Ha. 
(i) Calculate diversity H, of the population. 
(ii) If H<Ha then diversify until diversity is acceptable. 
(iii) Re-evaluate chromosomes in terms of fitness function defined. 

Step 7. New population: If Advance the new population to the next generation, oldpop = newpop 
Until (gen ≥ maxgen). 
 
Part families are identified based on the number of operations required by a part in a cell. Therefore, a part is 
assigned to a cell where it requires maximum number of machine operations. 
 

Table 2: Typical EA genetic parameter values 
EA Parameter Variable Value 
Number of generations maxgen 100 
Population size popsize 10-30 
Crossover probability pcross 0.4 – 0.6 
Mutation probability pmutation 0.02 – 0.2 
Inversion probability invprob 0.04 – 0.2 
Chromosome size chrom Number of machines 

5. Results and Discussion 
Our proposed EA approach was implemented in Java SE 7. In this section, we provide an illustration of the EA 
execution, and a comparison of the approach with other algorithms based on known published data sets. 
 
5.1 EA computational results 
Numerical results obtained when executing the EA algorithm are presented. Figure 7 illustrates the intermediate 
stages arrived at as the EA algorithm solves a 25 machine x 40 parts problem from Nair and Narendran (1998). The 
objective functions are ACFI and the OFI. Assume that the number of cells is four, and w1 = w2 = 0.5. The ACFI 
values rose from 23% to 67% after 35 iterations, while the OFI values rose from 16% to 44% after 45 iterations.  
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Figure 7: EA objective function for Nair & Narendran (1998) - 25 x 40 problems 

 
Further numerical experiments were done based on an 8 x 20 problem in Nair and Narendran (1998), shown in 
Table 3.  Using typical genetic parameters, simulation results were obtained as shown in Table 4 and 5.  
 

Table 3: An 8 x 20 problem from Nair and Narendran (1998)  
Machines Parts 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1  1 2     1 1  3  1 1  1 3  1  
2   1 1  1 4       2    2  2 
3  2      2 3  2  2 3  2 1  2  
4   5 2  2 2   2        1  1 
5 2    2 5    3  1   1  2    
6 1    1    2 1  3   2     3 
7   3 3  3 3    1 2      4  4 
8   4 4  4 1           3  5 

 
The results in Table 4 reveal that the EA run provides an improved solution to the problem. Table 5 gives a 
summary of the improved solution. The cell layout (machine cells) obtained by the EA approach are the same as 
those obtained from CASE algorithm (Nair and Narendran, 1998) and from CLASS algorithm (Mahdavi and 
Mahadevan, 2008). Like the CLASS algorithm, EA obtained an improved sequence of machines, with improved 
machine layout within cells. 
 

Table 4: EA solution for Nair and Narendran (1998) 8 x 20 problem 
Machines Parts 
 2 8 9 11 13 14 16 17 19 3 4 6 7 18 20 15 1 5 10 12 

1 1 1 1 3 1 1 1 3 1 2           
3 2 2 3 2 2 3 2 1 2            
2      2    1 1 1 4 2 2      
4          5 2 2 2 1 1    2  
7    1      3 3 3 3 4 4     2 
8          4 4 4 1 3 5      
6   2            3 2 1 1 1 3 
5        2    5    1 2 2 3 1 

Table 5: The final improved solution of the 8 x 20 problem  
Cell Machines Parts 

C1 1, 3 2, 8, 9, 11, 13, 14, 16, 17, 19 
C2 2, 4, 7, 8 3, 4, 6, 7, 18, 20 
C3 6, 5 1, 5, 10, 12, 15 
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To further demonstrate the performance of the EA algorithm, EA results were compared with CASE and CLASS 
algorithms. Table 6 provides the results of the study. Though machine groups and part families are the same for the 
three algorithms, ACFI and OFI differ with the CASE solution. The ACFI and OFI values of EA are similar to those 
obtained from CLASS, showing an improvement of the solution to the cell formation and layout problem. 
 

Table 6: A comparing EA, CASE and CLASS algorithms on a 8 x 20 problem 
Cell No.  CASE Solution   CLASS Solution  EA Solution  

 nc Nfc Ntc CFI%  nc Nfc Ntc CFI%  nc Nfc Ntc CFI% 
1 9 1 9 11.1  9 5 9 55.6  9 5 9 55.6 
2 6 7 18 38.9  6 9 18 50  6 9 18 50 
3 5 1 5 20.0  5 2 5 40.0  5 2 5 40.0 

Nflow = 41               
ACFI (%)    21.0     50.0     50.0 
OFI (%)    22.0     39.0     39.0 

 
5.2 Comparison of EA and other algorithms 
The Data sets reported by Tam (1988) and Harhalakis et al. (1990) were used for further comparative experiments. 
Park and Suresh (2003) made a comparative study on known algorithms such as fuzzy ART neural network and 
conventional clustering methods. Recent related algorithms are CASE designed by Nair and Narendran (1998), and 
CLASS proposed by Mahdavi and Mahadevan (2008). Table 7 shows the results of the comparative study. 
 

Table 7: A comparison of EA with other approaches 
Data set Size CLASS  Fuzzy ART  Hierarchical  EA 
  Cells ACFI OFI  Cells ACFI OFI  Cells ACFI OFI  Cells ACFI OFI 
Tam (1988) 12 X 19 2 65% 50%  2 49% 36%  2 48% 45%  2 65% 50% 
Harhalakis et al.(1990) 20 x 20 4 65% 41%  4 42% 34%  4 42% 34%  4 69% 43% 
Nair & Narendra (1998) 25 X 40 4 52% 34%  7 38% 27%  8 37% 22%  4 68% 42% 
Nair & Narendra (1998) 08 x 20 3 50% 39%          3 50% 39% 

 
According to these results, our EA approach is more preferable than other algorithms found in literature. 
 
6. Conclusions 
The integrated cell formation and layout problem is an essential but NP-hard problem involving cell formation and 
machine layout in each cell. The use of sequence data provides valuable additional information on the dominant 
flow patterns, which form the basis for solving the problem. One of the main challenges, is to extend the application 
of sequence data and to develop a robust algorithm for solving the joint design and layout problem. In this study, EA 
was proposed to solve the integrated design and layout problem based on sequence data. The approach has enhanced 
group chromosome scheme, group crossover operator, group mutation operator, and a chromosome repair 
mechanism. The operators enable the algorithm to reveal the group structure inherent in a data set, producing 
comparably high quality solutions. While crossover operator enhances exploration of unvisited points in the 
potential solution space, mutation exploits the best solution in the near-optimal space. Although increasing the 
number of cells and/or machines may demand more iteration before convergence to a good solution, the number of 
parts has no effect on the solution space. EA’s parallel mechanism gives the algorithm robustness and effectiveness 
over a variety of ill-structured input matrices. Thus, the algorithm is quite preferable in large problem situations. 
Known algorithms in literature were compared with EA approach based on average cell flow and overall flow 
indices as performance measures. These indices enabled the EA approach to evaluate the cell formation and layout 
problem in an integrated fashion.  Results of the computational study show the utility of the enhanced EA approach. 
Prospects for further research and application of the proposed EA may be interesting. The grouping concepts in this 
study can be extended to similar clustering problem domains, such as scheduling and network design. 
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