78,411 research outputs found

    Knowledge insertion: an efficient approach to reduce search effort in evolutionary scheduling

    Get PDF
    Evolutionary algorithms (EAs) are merely blind search algorithms, which only make use of the relative fitness of solutions, but completely ignore the nature of the problem. Their performance can be improved by using new multirecombinative approaches, which provide a good balance between exploration and exploitation. Even though in difficult problems with large search spaces a considerable number of evaluations are required to arrive to near-optimal solutions. On the other hand specialized heuristics are based on some specific features of the problem, and the solution obtained can include some features of optimal solutions. If we insert in the evolutionary algorithm the problem specific knowledge embedded in good solutions (seeds), coming from some other heuristic or from the evolutionary process itself, we can expect that the algorithm will be guided to promising sub-spaces avoiding a large search. This work shows alternative ways to insert knowledge in the search process by means of the inherent information carried by solutions coming from that specialised heuristic or gathered by the evolutionary process itself. To show the efficiency of this approach, the present paper compares the performance of multirecombined evolutionary algorithms with and without knowledge insertion when applied to selected instances of the Average Tardiness Problem in a single machine environment.Eje: Agentes y Sistemas Inteligentes (ASI)Red de Universidades con Carreras en Informática (RedUNCI

    Improving exploration in policy gradient search: Application to symbolic optimization

    Full text link
    Many machine learning strategies designed to automate mathematical tasks leverage neural networks to search large combinatorial spaces of mathematical symbols. In contrast to traditional evolutionary approaches, using a neural network at the core of the search allows learning higher-level symbolic patterns, providing an informed direction to guide the search. When no labeled data is available, such networks can still be trained using reinforcement learning. However, we demonstrate that this approach can suffer from an early commitment phenomenon and from initialization bias, both of which limit exploration. We present two exploration methods to tackle these issues, building upon ideas of entropy regularization and distribution initialization. We show that these techniques can improve the performance, increase sample efficiency, and lower the complexity of solutions for the task of symbolic regression.Comment: Published in 1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 202

    Improving machine dynamics via geometry optimization

    No full text
    The central thesis of this paper is that the dynamic performance of machinery can be improved dramatically in certain cases through a systematic and meticulous evolutionary algorithm search through the space of all structural geometries permitted by manufacturing, cost and functional constraints. This is a cheap and elegant approach in scenarios where employing active control elements is impractical for reasons of cost and complexity. From an optimization perspective the challenge lies in the efficient, yet thorough global exploration of the multi-dimensional and multi-modal design spaces often yielded by such problems. Morevoer, the designs are often defined by a mixture of continuous and discrete variables - a task that evolutionary algorithms appear to be ideally suited for. In this article we discuss the specific case of the optimization of crop spraying machinery for improved uniformity of spray deposition, subject to structural weight and manufacturing constraints. Using a mixed variable evolutionary algorithm allowed us to optimize both shape and topology. Through this process we have managed to reduce the maximum roll angle of the sprayer by an order of magnitude , whilst allowing only relatively inexpensive changes to the baseline design. Further (though less dramatic) improvements were shown to be possible when we relaxed the cost constraint. We applied the same approach to the inverse problem of reducing the mass while maintaining an acceptable roll angle - a 2% improvement proved possible in this cas
    • …
    corecore