27 research outputs found

    Evolution of Online User Behavior During a Social Upheaval

    Full text link
    Social media represent powerful tools of mass communication and information diffusion. They played a pivotal role during recent social uprisings and political mobilizations across the world. Here we present a study of the Gezi Park movement in Turkey through the lens of Twitter. We analyze over 2.3 million tweets produced during the 25 days of protest occurred between May and June 2013. We first characterize the spatio-temporal nature of the conversation about the Gezi Park demonstrations, showing that similarity in trends of discussion mirrors geographic cues. We then describe the characteristics of the users involved in this conversation and what roles they played. We study how roles and individual influence evolved during the period of the upheaval. This analysis reveals that the conversation becomes more democratic as events unfold, with a redistribution of influence over time in the user population. We conclude by observing how the online and offline worlds are tightly intertwined, showing that exogenous events, such as political speeches or police actions, affect social media conversations and trigger changes in individual behavior.Comment: Best Paper Award at ACM Web Science 201

    Measuring Emotional Contagion in Social Media

    Full text link
    Social media are used as main discussion channels by millions of individuals every day. The content individuals produce in daily social-media-based micro-communications, and the emotions therein expressed, may impact the emotional states of others. A recent experiment performed on Facebook hypothesized that emotions spread online, even in absence of non-verbal cues typical of in-person interactions, and that individuals are more likely to adopt positive or negative emotions if these are over-expressed in their social network. Experiments of this type, however, raise ethical concerns, as they require massive-scale content manipulation with unknown consequences for the individuals therein involved. Here, we study the dynamics of emotional contagion using Twitter. Rather than manipulating content, we devise a null model that discounts some confounding factors (including the effect of emotional contagion). We measure the emotional valence of content the users are exposed to before posting their own tweets. We determine that on average a negative post follows an over-exposure to 4.34% more negative content than baseline, while positive posts occur after an average over-exposure to 4.50% more positive contents. We highlight the presence of a linear relationship between the average emotional valence of the stimuli users are exposed to, and that of the responses they produce. We also identify two different classes of individuals: highly and scarcely susceptible to emotional contagion. Highly susceptible users are significantly less inclined to adopt negative emotions than the scarcely susceptible ones, but equally likely to adopt positive emotions. In general, the likelihood of adopting positive emotions is much greater than that of negative emotions.Comment: 10 pages, 5 figure

    Quantifying the Effect of Sentiment on Information Diffusion in Social Media

    Full text link
    Social media have become the main vehicle of information production and consumption online. Millions of users every day log on their Facebook or Twitter accounts to get updates and news, read about their topics of interest, and become exposed to new opportunities and interactions. Although recent studies suggest that the contents users produce will affect the emotions of their readers, we still lack a rigorous understanding of the role and effects of contents sentiment on the dynamics of information diffusion. This work aims at quantifying the effect of sentiment on information diffusion, to understand: (i) whether positive conversations spread faster and/or broader than negative ones (or vice-versa); (ii) what kind of emotions are more typical of popular conversations on social media; and, (iii) what type of sentiment is expressed in conversations characterized by different temporal dynamics. Our findings show that, at the level of contents, negative messages spread faster than positive ones, but positive ones reach larger audiences, suggesting that people are more inclined to share and favorite positive contents, the so-called positive bias. As for the entire conversations, we highlight how different temporal dynamics exhibit different sentiment patterns: for example, positive sentiment builds up for highly-anticipated events, while unexpected events are mainly characterized by negative sentiment. Our contribution is a milestone to understand how the emotions expressed in short texts affect their spreading in online social ecosystems, and may help to craft effective policies and strategies for content generation and diffusion.Comment: 10 pages, 5 figure

    Analyzing the Digital Traces of Political Manipulation: The 2016 Russian Interference Twitter Campaign

    Full text link
    Until recently, social media was seen to promote democratic discourse on social and political issues. However, this powerful communication platform has come under scrutiny for allowing hostile actors to exploit online discussions in an attempt to manipulate public opinion. A case in point is the ongoing U.S. Congress' investigation of Russian interference in the 2016 U.S. election campaign, with Russia accused of using trolls (malicious accounts created to manipulate) and bots to spread misinformation and politically biased information. In this study, we explore the effects of this manipulation campaign, taking a closer look at users who re-shared the posts produced on Twitter by the Russian troll accounts publicly disclosed by U.S. Congress investigation. We collected a dataset with over 43 million election-related posts shared on Twitter between September 16 and October 21, 2016, by about 5.7 million distinct users. This dataset included accounts associated with the identified Russian trolls. We use label propagation to infer the ideology of all users based on the news sources they shared. This method enables us to classify a large number of users as liberal or conservative with precision and recall above 90%. Conservatives retweeted Russian trolls about 31 times more often than liberals and produced 36x more tweets. Additionally, most retweets of troll content originated from two Southern states: Tennessee and Texas. Using state-of-the-art bot detection techniques, we estimated that about 4.9% and 6.2% of liberal and conservative users respectively were bots. Text analysis on the content shared by trolls reveals that they had a mostly conservative, pro-Trump agenda. Although an ideologically broad swath of Twitter users was exposed to Russian Trolls in the period leading up to the 2016 U.S. Presidential election, it was mainly conservatives who helped amplify their message

    Dancing to the Partisan Beat: A First Analysis of Political Communication on TikTok

    Full text link
    TikTok is a video-sharing social networking service, whose popularity is increasing rapidly. It was the world's second-most downloaded app in 2019. Although the platform is known for having users posting videos of themselves dancing, lip-syncing, or showcasing other talents, user-videos expressing political views have seen a recent spurt. This study aims to perform a primary evaluation of political communication on TikTok. We collect a set of US partisan Republican and Democratic videos to investigate how users communicated with each other about political issues. With the help of computer vision, natural language processing, and statistical tools, we illustrate that political communication on TikTok is much more interactive in comparison to other social media platforms, with users combining multiple information channels to spread their messages. We show that political communication takes place in the form of communication trees since users generate branches of responses to existing content. In terms of user demographics, we find that users belonging to both the US parties are young and behave similarly on the platform. However, Republican users generated more political content and their videos received more responses; on the other hand, Democratic users engaged significantly more in cross-partisan discussions.Comment: Accepted as a full paper at the 12th International ACM Web Science Conference (WebSci 2020). Please cite the WebSci version; Second version includes corrected typo

    On predictability of rare events leveraging social media: a machine learning perspective

    Full text link
    Information extracted from social media streams has been leveraged to forecast the outcome of a large number of real-world events, from political elections to stock market fluctuations. An increasing amount of studies demonstrates how the analysis of social media conversations provides cheap access to the wisdom of the crowd. However, extents and contexts in which such forecasting power can be effectively leveraged are still unverified at least in a systematic way. It is also unclear how social-media-based predictions compare to those based on alternative information sources. To address these issues, here we develop a machine learning framework that leverages social media streams to automatically identify and predict the outcomes of soccer matches. We focus in particular on matches in which at least one of the possible outcomes is deemed as highly unlikely by professional bookmakers. We argue that sport events offer a systematic approach for testing the predictive power of social media, and allow to compare such power against the rigorous baselines set by external sources. Despite such strict baselines, our framework yields above 8% marginal profit when used to inform simple betting strategies. The system is based on real-time sentiment analysis and exploits data collected immediately before the games, allowing for informed bets. We discuss the rationale behind our approach, describe the learning framework, its prediction performance and the return it provides as compared to a set of betting strategies. To test our framework we use both historical Twitter data from the 2014 FIFA World Cup games, and real-time Twitter data collected by monitoring the conversations about all soccer matches of four major European tournaments (FA Premier League, Serie A, La Liga, and Bundesliga), and the 2014 UEFA Champions League, during the period between Oct. 25th 2014 and Nov. 26th 2014.Comment: 10 pages, 10 tables, 8 figure

    MONITORING POTENTIAL DRUG INTERACTIONS AND REACTIONS VIA NETWORK ANALYSIS OF INSTAGRAM USER TIMELINES

    Get PDF
    Much recent research aims to identify evidence for Drug-Drug Interactions (DDI) and Adverse Drug reactions (ADR) from the biomedical scientific literature. In addition to this "Bibliome", the universe of social media provides a very promising source of large-scale data that can help identify DDI and ADR in ways that have not been hitherto possible. Given the large number of users, analysis of social media data may be useful to identify under-reported, population-level pathology associated with DDI, thus further contributing to improvements in population health. Moreover, tapping into this data allows us to infer drug interactions with natural products-including cannabis-which constitute an array of DDI very poorly explored by biomedical research thus far. Our goal is to determine the potential of Instagram for public health monitoring and surveillance for DDI, ADR, and behavioral pathology at large. Most social media analysis focuses on Twitter and Facebook, but Instagram is an increasingly important platform, especially among teens, with unrestricted access of public posts, high availability of posts with geolocation coordinates, and images to supplement textual analysis. Using drug, symptom, and natural product dictionaries for identification of the various types of DDI and ADR evidence, we have collected close to 7000 user timelines spanning from October 2010 to June 2015.We report on 1) the development of a monitoring tool to easily observe user-level timelines associated with drug and symptom terms of interest, and 2) population-level behavior via the analysis of co-occurrence networks computed from user timelines at three different scales: monthly, weekly, and daily occurrences. Analysis of these networks further reveals 3) drug and symptom direct and indirect associations with greater support in user timelines, as well as 4) clusters of symptoms and drugs revealed by the collective behavior of the observed population. This demonstrates that Instagram contains much drug- and pathology specific data for public health monitoring of DDI and ADR, and that complex network analysis provides an important toolbox to extract health-related associations and their support from large-scale social media data
    corecore