2,237 research outputs found

    Evolution of Cooperative Information Gathering in Self-Replicating Digital Organisms

    Full text link

    Evolving quorum sensing in digital organisms

    Get PDF
    For centuries it was thought that bacteria live asocial lives. However, recent discoveries show many species of bacteria communicate in order to perform tasks previously thought to be limited to multicellular organisms. Central to this capability is quorum sensing, whereby organisms detect cell density and use this information to trigger group behaviors. Quorum sensing is used by bacteria in the formation of biofilms, secretion of digestive enzymes and, in the case of pathogenic bacteria, release of toxins or other virulence factors. Indeed, methods to disrupt quorum sensing are currently being investigated as possible treatments for numerous diseases, including cystic fibrosis, epidemic cholera, and methicillin-resistant Staphylococcus aureus. In this paper we demonstrate the evolution of a quorum sensing behavior in populations of digital organisms. Specifically, we show that digital organisms are capable of evolving a strategy to collectively suppress self-replication, when the population density reaches a specific, evolved threshold. We present the evolved genome of an organism exhibiting this behavior and analyze the collective operation of this “algorithm. ” Finally, through a set of experiments we demonstrate that the behavior scales to populations up to 400 times larger than those in which the behavior evolved

    More Bang For Your Buck: Quorum-Sensing Capabilities Improve the Efficacy of Suicidal Altruism

    Full text link
    Within the context of evolution, an altruistic act that benefits the receiving individual at the expense of the acting individual is a puzzling phenomenon. An extreme form of altruism can be found in colicinogenic E. coli. These suicidal altruists explode, releasing colicins that kill unrelated individuals, which are not colicin resistant. By committing suicide, the altruist makes it more likely that its kin will have less competition. The benefits of this strategy rely on the number of competitors and kin nearby. If the organism explodes at an inopportune time, the suicidal act may not harm any competitors. Communication could enable organisms to act altruistically when environmental conditions suggest that that strategy would be most beneficial. Quorum sensing is a form of communication in which bacteria produce a protein and gauge the amount of that protein around them. Quorum sensing is one means by which bacteria sense the biotic factors around them and determine when to produce products, such as antibiotics, that influence competition. Suicidal altruists could use quorum sensing to determine when exploding is most beneficial, but it is challenging to study the selective forces at work in microbes. To address these challenges, we use digital evolution (a form of experimental evolution that uses self-replicating computer programs as organisms) to investigate the effects of enabling altruistic organisms to communicate via quorum sensing. We found that quorum-sensing altruists killed a greater number of competitors per explosion, winning competitions against non-communicative altruists. These findings indicate that quorum sensing could increase the beneficial effect of altruism and the suite of conditions under which it will evolve.Comment: 8 pages, 8 figures, ALIFE '14 conferenc

    Understanding Evolutionary Potential in Virtual CPU Instruction Set Architectures

    Get PDF
    We investigate fundamental decisions in the design of instruction set architectures for linear genetic programs that are used as both model systems in evolutionary biology and underlying solution representations in evolutionary computation. We subjected digital organisms with each tested architecture to seven different computational environments designed to present a range of evolutionary challenges. Our goal was to engineer a general purpose architecture that would be effective under a broad range of evolutionary conditions. We evaluated six different types of architectural features for the virtual CPUs: (1) genetic flexibility: we allowed digital organisms to more precisely modify the function of genetic instructions, (2) memory: we provided an increased number of registers in the virtual CPUs, (3) decoupled sensors and actuators: we separated input and output operations to enable greater control over data flow. We also tested a variety of methods to regulate expression: (4) explicit labels that allow programs to dynamically refer to specific genome positions, (5) position-relative search instructions, and (6) multiple new flow control instructions, including conditionals and jumps. Each of these features also adds complication to the instruction set and risks slowing evolution due to epistatic interactions. Two features (multiple argument specification and separated I/O) demonstrated substantial improvements int the majority of test environments. Some of the remaining tested modifications were detrimental, thought most exhibit no systematic effects on evolutionary potential, highlighting the robustness of digital evolution. Combined, these observations enhance our understanding of how instruction architecture impacts evolutionary potential, enabling the creation of architectures that support more rapid evolution of complex solutions to a broad range of challenges

    Using group selection to evolve leadership in populations of self-replicating digital organisms

    Full text link

    Harnessing Digital Evolution

    Full text link
    • …
    corecore