59,740 research outputs found

    From Social Data Mining to Forecasting Socio-Economic Crisis

    Full text link
    Socio-economic data mining has a great potential in terms of gaining a better understanding of problems that our economy and society are facing, such as financial instability, shortages of resources, or conflicts. Without large-scale data mining, progress in these areas seems hard or impossible. Therefore, a suitable, distributed data mining infrastructure and research centers should be built in Europe. It also appears appropriate to build a network of Crisis Observatories. They can be imagined as laboratories devoted to the gathering and processing of enormous volumes of data on both natural systems such as the Earth and its ecosystem, as well as on human techno-socio-economic systems, so as to gain early warnings of impending events. Reality mining provides the chance to adapt more quickly and more accurately to changing situations. Further opportunities arise by individually customized services, which however should be provided in a privacy-respecting way. This requires the development of novel ICT (such as a self- organizing Web), but most likely new legal regulations and suitable institutions as well. As long as such regulations are lacking on a world-wide scale, it is in the public interest that scientists explore what can be done with the huge data available. Big data do have the potential to change or even threaten democratic societies. The same applies to sudden and large-scale failures of ICT systems. Therefore, dealing with data must be done with a large degree of responsibility and care. Self-interests of individuals, companies or institutions have limits, where the public interest is affected, and public interest is not a sufficient justification to violate human rights of individuals. Privacy is a high good, as confidentiality is, and damaging it would have serious side effects for society.Comment: 65 pages, 1 figure, Visioneer White Paper, see http://www.visioneer.ethz.c

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    The SECURE collaboration model

    Get PDF
    The SECURE project has shown how trust can be made computationally tractable while retaining a reasonable connection with human and social notions of trust. SECURE has produced a well-founded theory of trust that has been tested and refined through use in real software such as collaborative spam filtering and electronic purse. The software comprises the SECURE kernel with extensions for policy specification by application developers. It has yet to be applied to large-scale, multi-domain distributed systems taking different application contexts into account. The project has not considered privacy in evidence distribution, a crucial issue for many application domains, including public services such as healthcare and police. The SECURE collaboration model has similarities with the trust domain concept, embodying the interaction set of a principal, but SECURE is primarily concerned with pseudonymous entities rather than domain-structured systems

    Audit-based Compliance Control (AC2) for EHR Systems

    Get PDF
    Traditionally, medical data is stored and processed using paper-based files. Recently, medical facilities have started to store, access and exchange medical data in digital form. The drivers for this change are mainly demands for cost reduction, and higher quality of health care. The main concerns when dealing with medical data are availability and confidentiality. Unavailability (even temporary) of medical data is expensive. Physicians may not be able to diagnose patients correctly, or they may have to repeat exams, adding to the overall costs of health care. In extreme cases availability of medical data can even be a matter of life or death. On the other hand, confidentiality of medical data is also important. Legislation requires medical facilities to observe the privacy of the patients, and states that patients have a final say on whether or not their medical data can be processed or not. Moreover, if physicians, or their EHR systems, are not trusted by the patients, for instance because of frequent privacy breaches, then patients may refuse to submit (correct) information, complicating the work of the physicians greatly. \ud \ud In traditional data protection systems, confidentiality and availability are conflicting requirements. The more data protection methods are applied to shield data from outsiders the more likely it becomes that authorized persons will not get access to the data in time. Consider for example, a password verification service that is temporarily not available, an access pass that someone forgot to bring, and so on. In this report we discuss a novel approach to data protection, Audit-based Compliance Control (AC2), and we argue that it is particularly suited for application in EHR systems. In AC2, a-priori access control is minimized to the mere authentication of users and objects, and their basic authorizations. More complex security procedures, such as checking user compliance to policies, are performed a-posteriori by using a formal and automated auditing mechanism. To support our claim we discuss legislation concerning the processing of health records, and we formalize a scenario involving medical personnel and a basic EHR system to show how AC2 can be used in practice. \ud \ud This report is based on previous work (Dekker & Etalle 2006) where we assessed the applicability of a-posteriori access control in a health care scenario. A more technically detailed article about AC2 recently appeared in the IJIS journal, where we focussed however on collaborative work environments (Cederquist, Corin, Dekker, Etalle, & Hartog, 2007). In this report we first provide background and related work before explaining the principal components of the AC2 framework. Moreover we model a detailed EHR case study to show its operation in practice. We conclude by discussing how this framework meets current trends in healthcare and by highlighting the main advantages and drawbacks of using an a-posteriori access control mechanism as opposed to more traditional access control mechanisms

    TRIDEnT: Building Decentralized Incentives for Collaborative Security

    Full text link
    Sophisticated mass attacks, especially when exploiting zero-day vulnerabilities, have the potential to cause destructive damage to organizations and critical infrastructure. To timely detect and contain such attacks, collaboration among the defenders is critical. By correlating real-time detection information (alerts) from multiple sources (collaborative intrusion detection), defenders can detect attacks and take the appropriate defensive measures in time. However, although the technical tools to facilitate collaboration exist, real-world adoption of such collaborative security mechanisms is still underwhelming. This is largely due to a lack of trust and participation incentives for companies and organizations. This paper proposes TRIDEnT, a novel collaborative platform that aims to enable and incentivize parties to exchange network alert data, thus increasing their overall detection capabilities. TRIDEnT allows parties that may be in a competitive relationship, to selectively advertise, sell and acquire security alerts in the form of (near) real-time peer-to-peer streams. To validate the basic principles behind TRIDEnT, we present an intuitive game-theoretic model of alert sharing, that is of independent interest, and show that collaboration is bound to take place infinitely often. Furthermore, to demonstrate the feasibility of our approach, we instantiate our design in a decentralized manner using Ethereum smart contracts and provide a fully functional prototype.Comment: 28 page

    Privacy, security, and trust issues in smart environments

    Get PDF
    Recent advances in networking, handheld computing and sensor technologies have driven forward research towards the realisation of Mark Weiser's dream of calm and ubiquitous computing (variously called pervasive computing, ambient computing, active spaces, the disappearing computer or context-aware computing). In turn, this has led to the emergence of smart environments as one significant facet of research in this domain. A smart environment, or space, is a region of the real world that is extensively equipped with sensors, actuators and computing components [1]. In effect the smart space becomes a part of a larger information system: with all actions within the space potentially affecting the underlying computer applications, which may themselves affect the space through the actuators. Such smart environments have tremendous potential within many application areas to improve the utility of a space. Consider the potential offered by a smart environment that prolongs the time an elderly or infirm person can live an independent life or the potential offered by a smart environment that supports vicarious learning

    Users' trust in information resources in the Web environment: a status report

    Get PDF
    This study has three aims; to provide an overview of the ways in which trust is either assessed or asserted in relation to the use and provision of resources in the Web environment for research and learning; to assess what solutions might be worth further investigation and whether establishing ways to assert trust in academic information resources could assist the development of information literacy; to help increase understanding of how perceptions of trust influence the behaviour of information users

    The Meeting of Acquaintances: A Cost-efficient Authentication Scheme for Light-weight Objects with Transient Trust Level and Plurality Approach

    Full text link
    Wireless sensor networks consist of a large number of distributed sensor nodes so that potential risks are becoming more and more unpredictable. The new entrants pose the potential risks when they move into the secure zone. To build a door wall that provides safe and secured for the system, many recent research works applied the initial authentication process. However, the majority of the previous articles only focused on the Central Authority (CA) since this leads to an increase in the computation cost and energy consumption for the specific cases on the Internet of Things (IoT). Hence, in this article, we will lessen the importance of these third parties through proposing an enhanced authentication mechanism that includes key management and evaluation based on the past interactions to assist the objects joining a secured area without any nearby CA. We refer to a mobility dataset from CRAWDAD collected at the University Politehnica of Bucharest and rebuild into a new random dataset larger than the old one. The new one is an input for a simulated authenticating algorithm to observe the communication cost and resource usage of devices. Our proposal helps the authenticating flexible, being strict with unknown devices into the secured zone. The threshold of maximum friends can modify based on the optimization of the symmetric-key algorithm to diminish communication costs (our experimental results compare to previous schemes less than 2000 bits) and raise flexibility in resource-constrained environments.Comment: 27 page
    • …
    corecore