93,315 research outputs found

    Evidence cross-validation and Bayesian inference of MAST plasma equilibria

    Get PDF
    In this paper, current profiles for plasma discharges on the Mega-Ampere Spherical Tokamak (MAST) are directly calculated from pickup coil, flux loop and Motional-Stark Effect (MSE) observations via methods based in the statistical theory of Bayesian analysis. By representing toroidal plasma current as a series of axisymmetric current beams with rectangular cross-section and inferring the current for each one of these beams, flux-surface geometry and q-profiles are subsequently calculated by elementary application of Biot-Savart's law. The use of this plasma model in the context of Bayesian analysis was pioneered by Svensson and Werner on the Joint-European Tokamak (JET) [J. Svensson and A. Werner. Current tomography for axisymmetric plasmas. Plasma Physics and Controlled Fusion, 50(8):085002, 2008]. In this framework, linear forward models are used to generate diagnostic predictions, and the probability distribution for the currents in the collection of plasma beams was subsequently calculated directly via application of Bayes' formula. In this work, we introduce a new diagnostic technique to identify and remove outlier observations associated with diagnostics falling out of calibration or suffering from an unidentified malfunction. These modifications enable good agreement between Bayesian inference of the last closed flux-surface (LCFS) with other corroborating data, such as such as that from force balance considerations using EFIT++ [L. Appel et al., Proc. 33rd EPS Conf., Rome, Italy, 2006]. In addition, this analysis also yields errors on the plasma current profile and flux-surface geometry, as well as directly predicting the Shafranov shift of the plasma core.This work was jointly funded by the Australian Government through International Science Linkages Grant No. CG130047, the Australian National University, the United Kingdom Engineering and Physical Sciences Research Council under Grant No. EP/G003955, and by the European Communities under the contract of Association between EURATOM and CCFE

    Paradox Elimination in Dempster–Shafer Combination Rule with Novel Entropy Function: Application in Decision-Level Multi-Sensor Fusion

    Get PDF
    Multi-sensor data fusion technology in an important tool in building decision-making applications. Modified Dempster–Shafer (DS) evidence theory can handle conflicting sensor inputs and can be applied without any prior information. As a result, DS-based information fusion is very popular in decision-making applications, but original DS theory produces counterintuitive results when combining highly conflicting evidences from multiple sensors. An effective algorithm offering fusion of highly conflicting information in spatial domain is not widely reported in the literature. In this paper, a successful fusion algorithm is proposed which addresses these limitations of the original Dempster–Shafer (DS) framework. A novel entropy function is proposed based on Shannon entropy, which is better at capturing uncertainties compared to Shannon and Deng entropy. An 8-step algorithm has been developed which can eliminate the inherent paradoxes of classical DS theory. Multiple examples are presented to show that the proposed method is effective in handling conflicting information in spatial domain. Simulation results showed that the proposed algorithm has competitive convergence rate and accuracy compared to other methods presented in the literature
    • …
    corecore