4,012 research outputs found

    Nonlinear Diffusion and Image Contour Enhancement

    Full text link
    The theory of degenerate parabolic equations of the forms ut=(Φ(ux))xandvt=(Φ(v))xx u_t=(\Phi(u_x))_{x} \quad {\rm and} \quad v_{t}=(\Phi(v))_{xx} is used to analyze the process of contour enhancement in image processing, based on the evolution model of Sethian and Malladi. The problem is studied in the framework of nonlinear diffusion equations. It turns out that the standard initial-value problem solved in this theory does not fit the present application since it it does not produce image concentration. Due to the degenerate character of the diffusivity at high gradient values, a new free boundary problem with singular boundary data can be introduced, and it can be solved by means of a non-trivial problem transformation. The asymptotic convergence to a sharp contour is established and rates calculated.Comment: 29 pages, includes 6 figure

    Five types of blow-up in a semilinear fourth-order reaction-diffusion equation: an analytic-numerical approach

    Full text link
    Five types of blow-up patterns that can occur for the 4th-order semilinear parabolic equation of reaction-diffusion type u_t= -\Delta^2 u + |u|^{p-1} u \quad {in} \quad \ren \times (0,T), p>1, \quad \lim_{t \to T^-}\sup_{x \in \ren} |u(x,t)|= +\iy, are discussed. For the semilinear heat equation ut=Δu+upu_t= \Delta u+ u^p, various blow-up patterns were under scrutiny since 1980s, while the case of higher-order diffusion was studied much less, regardless a wide range of its application.Comment: 41 pages, 27 figure

    Mathematical Modelling of Tyndall Star Initiation

    Full text link
    The superheating that usually occurs when a solid is melted by volumetric heating can produce irregular solid-liquid interfaces. Such interfaces can be visualised in ice, where they are sometimes known as Tyndall stars. This paper describes some of the experimental observations of Tyndall stars and a mathematical model for the early stages of their evolution. The modelling is complicated by the strong crystalline anisotropy, which results in an anisotropic kinetic undercooling at the interface; it leads to an interesting class of free boundary problems that treat the melt region as infinitesimally thin
    • …
    corecore