1,467 research outputs found

    Asymptotically Efficient Quasi-Newton Type Identification with Quantized Observations Under Bounded Persistent Excitations

    Full text link
    This paper is concerned with the optimal identification problem of dynamical systems in which only quantized output observations are available under the assumption of fixed thresholds and bounded persistent excitations. Based on a time-varying projection, a weighted Quasi-Newton type projection (WQNP) algorithm is proposed. With some mild conditions on the weight coefficients, the algorithm is proved to be mean square and almost surely convergent, and the convergence rate can be the reciprocal of the number of observations, which is the same order as the optimal estimate under accurate measurements. Furthermore, inspired by the structure of the Cramer-Rao lower bound, an information-based identification (IBID) algorithm is constructed with adaptive design about weight coefficients of the WQNP algorithm, where the weight coefficients are related to the parameter estimates which leads to the essential difficulty of algorithm analysis. Beyond the convergence properties, this paper demonstrates that the IBID algorithm tends asymptotically to the Cramer-Rao lower bound, and hence is asymptotically efficient. Numerical examples are simulated to show the effectiveness of the information-based identification algorithm.Comment: 16 pages, 3 figures, submitted to Automatic

    Formal Design of Asynchronous Fault Detection and Identification Components using Temporal Epistemic Logic

    Get PDF
    Autonomous critical systems, such as satellites and space rovers, must be able to detect the occurrence of faults in order to ensure correct operation. This task is carried out by Fault Detection and Identification (FDI) components, that are embedded in those systems and are in charge of detecting faults in an automated and timely manner by reading data from sensors and triggering predefined alarms. The design of effective FDI components is an extremely hard problem, also due to the lack of a complete theoretical foundation, and of precise specification and validation techniques. In this paper, we present the first formal approach to the design of FDI components for discrete event systems, both in a synchronous and asynchronous setting. We propose a logical language for the specification of FDI requirements that accounts for a wide class of practical cases, and includes novel aspects such as maximality and trace-diagnosability. The language is equipped with a clear semantics based on temporal epistemic logic, and is proved to enjoy suitable properties. We discuss how to validate the requirements and how to verify that a given FDI component satisfies them. We propose an algorithm for the synthesis of correct-by-construction FDI components, and report on the applicability of the design approach on an industrial case-study coming from aerospace.Comment: 33 pages, 20 figure

    A Novel Kernel Algorithm for Finite Impulse Response Channel Identification, Journal of Telecommunications and Information Technology, 2023, nr 2

    Get PDF
    Over the last few years, kernel adaptive filters have gained in importance as the kernel trick started to be used in classic linear adaptive filters in order to address various regression and time-series prediction issues in nonlinear environments.In this paper, we study a recursive method for identifying finite impulse response (FIR) nonlinear systems based on binary-value observation systems. We also apply the kernel trick to the recursive projection (RP) algorithm, yielding a novel recursive algorithm based on a positive definite kernel. For purposes, our approach is compared with the recursive projection (RP) algorithm in the process of identifying the parameters of two channels, with the first of them being a frequency-selective fading channel, called a broadband radio access network (BRAN B) channel, and the other being a a theoretical frequency-selective channel, known as the Macchi channel. Monte Carlo simulation results are presented to show the performance of the proposed algorith

    ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Π°Ρ ΠΎΡ†Π΅Π½ΠΊΠ° ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ плотности мощности Π½Π° основС Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования сигналов с использованиСм ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

    Get PDF
    Π‘ΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· сигналов ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΊΠ°ΠΊ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· основных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² исслСдования систСм ΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ физичСской ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹. Π’ условиях статистичСской нСопрСдСлСнности сигналы ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‚ΡΡ случайным измСнСниям ΠΈ Π·Π°ΡˆΡƒΠΌΠ»Π΅Π½ΠΈΡΠΌ. Анализ Ρ‚Π°ΠΊΠΈΡ… сигналов ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ нСобходимости оцСнивания ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ плотности мощности (БПМ). На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ для Π΅Ρ‘ оцСнивания ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄. ΠžΡΠ½ΠΎΠ²Ρƒ Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Ρ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ², Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… этот ΠΌΠ΅Ρ‚ΠΎΠ΄, составляСт дискрСтноС ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π€ΡƒΡ€ΡŒΠ΅. Π’ этих Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠ³ΠΎ умноТСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ массовыми опСрациями. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²Π΅Π΄Π΅Ρ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ числа этих ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ. ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ умноТСния относятся ΠΊ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠΈΠΌ опСрациям. Они ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… возмоТностСй Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Π΅Π³ΠΎ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½ΡƒΡŽ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассматриваСтся Π·Π°Π΄Π°Ρ‡Π° сниТСния ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½ΠΎΠΉ слоТности вычислСния ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ БПМ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π—Π°Π΄Π°Ρ‡Π° Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ Π½Π° основС использования Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования для прСобразования сигнала Π² Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ. Π’Π°ΠΊΠΎΠ΅ Π΄Π²ΡƒΡ…ΡƒΡ€ΠΎΠ²Π½Π΅Π²ΠΎΠ΅ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Π°Π½ΠΈΠ΅ сигналов осущСствляСтся Π±Π΅Π· систСматичСской ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ. На основС Ρ‚Π΅ΠΎΡ€ΠΈΠΈ дискрСтно-событийного модСлирования, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ рассматриваСтся ΠΊΠ°ΠΊ хронологичСская ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ сущСствСнных событий, опрСдСляСмых смСной Π΅Π³ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. ИспользованиС дискрСтно-событийной ΠΌΠΎΠ΄Π΅Π»ΠΈ для Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования обСспСчило аналитичСскоС вычислСниС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ интСгрирования ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΎΡ‚ Π°Π½Π°Π»ΠΎΠ³ΠΎΠ²ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ БПМ ΠΊ матСматичСским ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π°ΠΌ Π΅Π΅ вычислСния Π² дискрСтном Π²ΠΈΠ΄Π΅. Π­Ρ‚ΠΈ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ стали основой для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌΠΈ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ опСрациями Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° ΡΠ²Π»ΡΡŽΡ‚ΡΡ арифмСтичСскиС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ слоТСния ΠΈ вычитания. УмСньшСниС количСства ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ умноТСния сниТаСт ΠΎΠ±Ρ‰ΡƒΡŽ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠΎΡΡ‚ΡŒ оцСнивания БПМ. Π‘ Ρ†Π΅Π»ΡŒΡŽ исслСдования Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ числСнныС экспСримСнты. Они ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»ΠΈΡΡŒ Π½Π° основС ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ модСлирования дискрСтно-событийной ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования. Π’ качСствС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ вычислСния ΠΎΡ†Π΅Π½ΠΎΠΊ БПМ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ряда Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ извСстных ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚, Ρ‡Ρ‚ΠΎ использованиС Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° позволяСт Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹Π΅ ΠΎΡ†Π΅Π½ΠΊΠΈ БПМ с высокой Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ частотным Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π² условиях присутствия Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΎΠ³ΠΎ ΡˆΡƒΠΌΠ° ΠΏΡ€ΠΈ Π½ΠΈΠ·ΠΊΠΎΠΌ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ сигнал/ΡˆΡƒΠΌ. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ рСализация Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° осущСствлСна Π² Π²ΠΈΠ΄Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ модуля. Π”Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ Π² составС комплСксного мСтрологичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния для ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° частотного состава слоТных сигналов

    ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Π°Ρ ΠΎΡ†Π΅Π½ΠΊΠ° ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ плотности мощности Π½Π° основС Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования сигналов с использованиСм ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

    Get PDF
    Spectral analysis of signals is used as one of the main methods for studying systems and objects of various physical natures. Under conditions of a priori statistical uncertainty, the signals are subject to random changes and noise. Spectral analysis of such signals involves the estimation of the power spectral density (PSD). One of the classical methods for estimating PSD is the periodogram method. The algorithms that implement this method in digital form are based on the discrete Fourier transform. Digital multiplication operations are mass operations in these algorithms. The use of window functions leads to an increase in the number of these operations. Multiplication operations are among the most time consuming operations. They are the dominant factor in determining the computational capabilities of an algorithm and determine its multiplicative complexity. The paper deals with the problem of reducing the multiplicative complexity of calculating the periodogram estimate of the PSD using window functions. The problem is solved based on the use of binary-sign stochastic quantization for converting a signal into digital form. This two-level signal quantization is carried out without systematic error. Based on the theory of discrete-event modeling, the result of a binary-sign stochastic quantization in time is considered as a chronological sequence of significant events determined by the change in its values. The use of a discrete-event model for the result of binary-sign stochastic quantization provided an analytical calculation of integration operations during the transition from the analog form of the periodogram estimation of the SPM to the mathematical procedures for calculating it in discrete form. These procedures became the basis for the development of a digital algorithm. The main computational operations of the algorithm are addition and subtraction arithmetic operations. Reducing the number of multiplication operations decreases the overall computational complexity of the PSD estimation. Numerical experiments were carried out to study the algorithm operation. They were carried out on the basis of simulation modeling of the discrete-event procedure of binary-sign stochastic quantization. The results of calculating the PSD estimates are presented using a number of the most famous window functions as an example. The results obtained indicate that the use of the developed algorithm allows calculating periodogram estimates of PSD with high accuracy and frequency resolution in the presence of additive white noise at a low signal-to-noise ratio. The practical implementation of the algorithm is carried out in the form of a functionally independent software module. This module can be used as a part of complex metrologically significant software for operational analysis of the frequency composition of complex signals.Π‘ΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· сигналов ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΊΠ°ΠΊ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· основных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² исслСдования систСм ΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ физичСской ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹. Π’ условиях статистичСской нСопрСдСлСнности сигналы ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‚ΡΡ случайным измСнСниям ΠΈ Π·Π°ΡˆΡƒΠΌΠ»Π΅Π½ΠΈΡΠΌ. Анализ Ρ‚Π°ΠΊΠΈΡ… сигналов ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ нСобходимости оцСнивания ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ плотности мощности (БПМ). На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ для Π΅Ρ‘ оцСнивания ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄. ΠžΡΠ½ΠΎΠ²Ρƒ Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Ρ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ², Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… этот ΠΌΠ΅Ρ‚ΠΎΠ΄, составляСт дискрСтноС ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π€ΡƒΡ€ΡŒΠ΅. Π’ этих Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠ³ΠΎ умноТСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ массовыми опСрациями. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²Π΅Π΄Π΅Ρ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ числа этих ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ. ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ умноТСния относятся ΠΊ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠΈΠΌ опСрациям. Они ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… возмоТностСй Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Π΅Π³ΠΎ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½ΡƒΡŽ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассматриваСтся Π·Π°Π΄Π°Ρ‡Π° сниТСния ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½ΠΎΠΉ слоТности вычислСния ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ БПМ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π—Π°Π΄Π°Ρ‡Π° Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ Π½Π° основС использования Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования для прСобразования сигнала Π² Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ. Π’Π°ΠΊΠΎΠ΅ Π΄Π²ΡƒΡ…ΡƒΡ€ΠΎΠ²Π½Π΅Π²ΠΎΠ΅ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Π°Π½ΠΈΠ΅ сигналов осущСствляСтся Π±Π΅Π· систСматичСской ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ. На основС Ρ‚Π΅ΠΎΡ€ΠΈΠΈ дискрСтно-событийного модСлирования, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ рассматриваСтся ΠΊΠ°ΠΊ хронологичСская ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ сущСствСнных событий, опрСдСляСмых смСной Π΅Π³ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. ИспользованиС дискрСтно-событийной ΠΌΠΎΠ΄Π΅Π»ΠΈ для Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования обСспСчило аналитичСскоС вычислСниС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ интСгрирования ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΎΡ‚ Π°Π½Π°Π»ΠΎΠ³ΠΎΠ²ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ БПМ ΠΊ матСматичСским ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π°ΠΌ Π΅Π΅ вычислСния Π² дискрСтном Π²ΠΈΠ΄Π΅. Π­Ρ‚ΠΈ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ стали основой для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌΠΈ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ опСрациями Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° ΡΠ²Π»ΡΡŽΡ‚ΡΡ арифмСтичСскиС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ слоТСния ΠΈ вычитания. УмСньшСниС количСства ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ умноТСния сниТаСт ΠΎΠ±Ρ‰ΡƒΡŽ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠΎΡΡ‚ΡŒ оцСнивания БПМ. Π‘ Ρ†Π΅Π»ΡŒΡŽ исслСдования Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ числСнныС экспСримСнты. Они ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»ΠΈΡΡŒ Π½Π° основС ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ модСлирования дискрСтно-событийной ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования. Π’ качСствС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ вычислСния ΠΎΡ†Π΅Π½ΠΎΠΊ БПМ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ряда Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ извСстных ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚, Ρ‡Ρ‚ΠΎ использованиС Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° позволяСт Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹Π΅ ΠΎΡ†Π΅Π½ΠΊΠΈ БПМ с высокой Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ частотным Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π² условиях присутствия Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΎΠ³ΠΎ ΡˆΡƒΠΌΠ° ΠΏΡ€ΠΈ Π½ΠΈΠ·ΠΊΠΎΠΌ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ сигнал/ΡˆΡƒΠΌ. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ рСализация Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° осущСствлСна Π² Π²ΠΈΠ΄Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ модуля. Π”Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ Π² составС комплСксного мСтрологичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния для ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° частотного состава слоТных сигналов

    Double Asynchronous Switching Control for Takagi–Sugeno Fuzzy Markov Jump Systems via Adaptive Event-Triggered Mechanism

    Get PDF
    This article addresses the issue of adaptive event- triggered H∞ control for Markov jump systems based on Takagi-Sugeno (T-S) fuzzy model. Firstly, a new double asynchronous switching controller is presented to deal with the problem of the mismatch of premise variables and modes between the controller and the plant, which is widespread in real network environment. To further reduce the power consumption of communication, a switching adaptive event-triggered mechanism is adopted to relieve the network transmission pressure while ensuring the control effect. In addition, a new Lyapunov-Krasovskii functional (LKF) is constructed to reduce conservatism by introducing the membership functions (MFs) and time-varying delays informa- tion. Meanwhile, the invariant set is estimated to ensure the stability of the system. And the disturbance rejection ability is measured by the optimal H∞ performance index. Finally, two examples are presented to demonstrate the effectiveness of the proposed approach

    Closed-Loop Brain-Computer Interfaces for Memory Restoration Using Deep Brain Stimulation

    Get PDF
    The past two decades have witnessed the rapid growth of therapeutic brain-computer interfaces (BCI) targeting a diversity of brain dysfunctions. Among many neurosurgical procedures, deep brain stimulation (DBS) with neuromodulation technique has emerged as a fruitful treatment for neurodegenerative disorders such as epilepsy, Parkinson\u27s disease, post-traumatic amnesia, and Alzheimer\u27s disease, as well as neuropsychiatric disorders such as depression, obsessive-compulsive disorder, and schizophrenia. In parallel to the open-loop neuromodulation strategies for neuromotor disorders, recent investigations have demonstrated the superior performance of closed-loop neuromodulation systems for memory-relevant disorders due to the more sophisticated underlying brain circuitry during cognitive processes. Our efforts are focused on discovering unique neurophysiological patterns associated with episodic memories then applying control theoretical principles to achieve closed-loop neuromodulation of such memory-relevant oscillatory activity, especially, theta and gamma oscillations. First, we use a unique dataset with intracranial electrodes inserted simultaneously into the hippocampus and seven cortical regions across 40 human subjects to test for the presence of a pattern that the phase of hippocampal theta oscillation modulates gamma oscillations in the cortex, termed cross-regional phase-amplitude coupling (xPAC), representing a key neurophysiological mechanism that promotes the temporal organization of interregional oscillatory activities, which has not previously been observed in human subjects. We then establish that the magnitude of xPAC predicts memory encoding success along with other properties of xPAC. We find that strong functional xPAC occurs principally between the hippocampus and other mesial temporal structures, namely entorhinal and parahippocampal cortices, and that xPAC is overall stronger for posterior hippocampal connections. Next, we focus on hippocampal gamma power as a `biomarker\u27 and use a novel dataset in which open-loop DBS was applied to the posterior cingulate cortex (PCC) during the encoding of episodic memories. We evaluate the feasibility of modulating hippocampal power by a precise control of stimulation via a linear quadratic integral (LQI) controller based on autoregressive with exogenous input (ARX) modeling for in-vivo use. In the simulation framework, we demonstrate proposed BCI system achieves effective control of hippocampal gamma power in 15 out of 17 human subjects and we show our DBS pattern is physiologically safe with realistic time scales. Last, we further develop the PCC-applied binary-noise (BN) DBS paradigm targeting the neuromodulation of both hippocampal theta and gamma oscillatory power in 12 human subjects. We utilize a novel nonlinear autoregressive with exogenous input neural network (NARXNN) as the plant paired with a proportional–integral–derivative (PID) controller (NARXNN-PID) for delivering a precise stimulation pattern to achieve desired oscillatory power level. Compared to a benchmark consisted of a linear state-space model (LSSM) with a PID controller, we not only demonstrate that the superior performance of our NARXNN plant model but also show the greater capacity of NARXNN-PID architecture in controlling both hippocampal theta and gamma power. We outline further experimentation to test our BCI system and compare our findings to emerging closed-loop neuromodulation strategies

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. MΓ€rz 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen UniversitÀt Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform für den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur Knüpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und AnsÀtze einem breiten Publikum aus Wissenschaft und Wirtschaft zu prÀsentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjÀhriges Bestehen hat ihn zu einer festen Grâße in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium für Bildung und Forschung gefârderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu prÀsentieren. Vertreter der Projekte Generische Plattform für SystemzuverlÀssigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwÀrtigen Arbeiten vor. Dies bereichert denWorkshop durch zusÀtzliche Themenschwerpunkte und bietet eine wertvolle ErgÀnzung zu den BeitrÀgen der Autoren. [... aus dem Vorwort
    • …
    corecore