304 research outputs found

    Data analytics for stochastic control and prognostics in cyber-physical systems

    Get PDF
    In this dissertation, several novel cyber fault diagnosis and prognosis and defense methodologies for cyber-physical systems have been proposed. First, a novel routing scheme for wireless mesh network is proposed. An effective capacity estimation for P2P and E2E path is designed to guarantee the vital transmission safety. This scheme can ensure a high quality of service (QoS) under imperfect network condition, even cyber attacks. Then, the imperfection, uncertainties, and dynamics in the cyberspace are considered both in system model and controller design. A PDF identifier is proposed to capture the time-varying delays and its distribution. With the modification of traditional stochastic optimal control using PDF of delays, the assumption of full knowledge of network imperfection in priori is relaxed. This proposed controller is considered a novel resilience control strategy for cyber fault diagnosis and prognosis. After that, we turn to the development of a general framework for cyber fault diagnosis and prognosis schemes for CPSs wherein the cyberspace performance affect the physical system and vice versa. A novel cyber fault diagnosis scheme is proposed. It is capable of detecting cyber fault by monitoring the probability of delays. Also, the isolation of cyber and physical system fault is achieved with cooperating with the traditional observer based physical system fault detection. Next, a novel cyber fault prognosis scheme, which can detect and estimate cyber fault and its negative effects on system performance ahead of time, is proposed. Moreover, soft and hard cyber faults are isolated depending on whether potential threats on system stability is predicted. Finally, one-class SVM is employed to classify healthy and erroneous delays. Then, another cyber fault prognosis based on OCSVM is proposed --Abstract, page iv

    Mastering Uncertainty in Mechanical Engineering

    Get PDF
    This open access book reports on innovative methods, technologies and strategies for mastering uncertainty in technical systems. Despite the fact that current research on uncertainty is mainly focusing on uncertainty quantification and analysis, this book gives emphasis to innovative ways to master uncertainty in engineering design, production and product usage alike. It gathers authoritative contributions by more than 30 scientists reporting on years of research in the areas of engineering, applied mathematics and law, thus offering a timely, comprehensive and multidisciplinary account of theories and methods for quantifying data, model and structural uncertainty, and of fundamental strategies for mastering uncertainty. It covers key concepts such as robustness, flexibility and resilience in detail. All the described methods, technologies and strategies have been validated with the help of three technical systems, i.e. the Modular Active Spring-Damper System, the Active Air Spring and the 3D Servo Press, which have been in turn developed and tested during more than ten years of cooperative research. Overall, this book offers a timely, practice-oriented reference guide to graduate students, researchers and professionals dealing with uncertainty in the broad field of mechanical engineering

    Reliable and Safe Motion Control of Unmanned Vehicles

    Get PDF
    Unmanned vehicles (UVs) are playing an increasingly significant role in modern daily life. In the past decades, numerous commercial, scientific, and military communities across the world are developing fully autonomous UVs for a variety of applications, such as environmental monitoring and surveillance, post-disaster search and rescue, border patrol, natural resources exploration, and experimental platforms for new technologies verification. The excessive opportunities and threats that come along with these diverse applications have created a niche demand for UVs to extend their capabilities to perform more sophisticated and hazardous missions with greater autonomy, lower costs of development and operation, improved personnel safety and security, extended operational range (reliability) and precision, as well as increased flexibility in sophisticated environments including so-called dirty, dull, harsh, and dangerous missions. In order to successfully and effectively execute missions and meet their corresponding performance criteria and overcome these ever-increasing challenges, greater autonomy together with more advanced reliable and safe motion control systems are required to offer the critical technologies for ensuring intelligent, safe, reliable, and efficient control of UVs in the presence of disturbances, actuator saturation, and even actuator faults, especially for practical applications. This thesis concentrates on the development of different reliable and safe motion control algorithms/strategies applicable to UVs, in particular, unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs). A number of contributions pertaining to the fault detection and diagnosis (FDD), fault-tolerant control (FTC), disturbance estimation and compensation, and actuator saturation avoidance have been made in this thesis. In addition to the control problems, this thesis also presents several guidance-related contributions, including adaptive observer-based line-of-sight (LOS) guidance law, time-varying lookahead distance scheme, piecewise path switching criterion for guiding a single UV, as well as a proportional-integral (PI) type of leader-follower formation guidance strategy for a group of UVs

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Advances in Spacecraft Systems and Orbit Determination

    Get PDF
    "Advances in Spacecraft Systems and Orbit Determinations", discusses the development of new technologies and the limitations of the present technology, used for interplanetary missions. Various experts have contributed to develop the bridge between present limitations and technology growth to overcome the limitations. Key features of this book inform us about the orbit determination techniques based on a smooth research based on astrophysics. The book also provides a detailed overview on Spacecraft Systems including reliability of low-cost AOCS, sliding mode controlling and a new view on attitude controller design based on sliding mode, with thrusters. It also provides a technological roadmap for HVAC optimization. The book also gives an excellent overview of resolving the difficulties for interplanetary missions with the comparison of present technologies and new advancements. Overall, this will be very much interesting book to explore the roadmap of technological growth in spacecraft systems

    Supervised fault tolerant control architecture for nonlinear systems

    Get PDF
    Scope: The growing complexity of physical plants and control missions inevitably leads to increasing occurrence, diversity and severity of faults. Availability, defined as the probability that a system or equipment will operate satisfactory and effectively at any point of time, becomes a factor of increasing importance. Fault Tolerant Control (FTC) is a field of research that aims to increase availability and reduce the risk of safety hazards and other undesirable consequences by specifically designing control algorithms capable of maintaining stability and/or performance despite the occurrence of faults. This report presents a novel FTC solution based on a hierarchical architecture in which an adaptive critic controller is overseen by a supervisor managing a dynamic model bank of fault solutions.Findings and Conclusions: The presented work has demonstrated that the implementation of a synergistic combination of a reconfigurable controller and a fault diagnosis and controller malfunction detection supervisor based on three distinct quality indexes generates an efficient and reliable FTC architecture. The application of adaptive critic designs as reconfigurable controllers is shown to give the hierarchical algorithm the degree of flexibility required to deal with both abrupt and incipient unknown changes in the plant dynamics due to faults. The proposed supervisor system is used to accelerate the convergence of the method by loading new initial conditions to the controller when the plant is affected by a known abrupt fault. Moreover, the developed fault diagnosis decision logic is capable of recognizing new fault scenarios and assimilating them online to the dynamic model bank, along with parameters for the corresponding controller. The introduction of the weight quality index has made possible to distinguish between faults in the plant and controller malfunctions caused by online training divergence or local minima convergence. In order to achieve application-specific key FTC specifications, a methodology for initializing and tuning twelve distinct parameters of the quality indexes was also developed. Finally, a series of key steps that form the basis for the fault development information extraction module capable of providing the probability of occurrence of future faults to the user, are also included in this report

    Heterogeneous and hybrid control with application in automotive systems

    Get PDF
    Control systems for automotive systems have acquired a new level of complexity. To fulfill the requirements of the controller specifications new technologies are needed. In many cases high performance and robust control cannot be provided by a simple conventional controller anymore. In this case hybrid combinations of local controllers, gain scheduled controllers and global stabilisation concepts are necessary. A considerable number of state-of-the-art automotive controllers (anti-lock brake system (ABS), electronic stabilising program (ESP)) already incorporate heterogeneous and hybrid control concepts as ad-hoc solutions. In this work a heterogeneous/hybrid control system is developed for a test vehicle in order to solve a clearly specified and relevant automotive control problem. The control system will be evaluated against a state-of-the-art conventional controller to clearly show the benefits and advantages arising from the novel approach. A multiple model-based observer/estimator for the estimation of parameters is developed to reset the parameter estimate in a conventional Lyapunov based nonlinear adaptive controller. The advantage of combining both approaches is that the performance of the controller with respect to disturbances can be improved considerably because a reduced controller gain will increase the robustness of the approach with respect to noise and unmodelled dynamics. Several alternative resetting criteria are developed based on a control Lyapunov function, such that resetting guarantees a decrease in the Lyapunov function. Since ABS systems have to operate on different possibly fast changing road surfaces the application of hybrid methodologies is apparent. Four different model based wheel slip controllers will be presented: two nonlinear approaches combined with parameter resetting, a simple linear controller that has been designed using the technique of simultaneously stabilising a set of linear plants as well as a sub-optimal linear quadratic (LQ)-controller. All wheel slip controllers operate as low level controllers in a modular structure that has been developed for the ABS problem. The controllers will be applied to a real Mercedes E-class passenger car. The vehicle is equipped with a brake-by-wire system and electromechanical brake actuators. Extensive real life tests show the benefits of the hybrid approaches in a fast changing environment

    Fuzzy Controllers

    Get PDF
    Trying to meet the requirements in the field, present book treats different fuzzy control architectures both in terms of the theoretical design and in terms of comparative validation studies in various applications, numerically simulated or experimentally developed. Through the subject matter and through the inter and multidisciplinary content, this book is addressed mainly to the researchers, doctoral students and students interested in developing new applications of intelligent control, but also to the people who want to become familiar with the control concepts based on fuzzy techniques. Bibliographic resources used to perform the work includes books and articles of present interest in the field, published in prestigious journals and publishing houses, and websites dedicated to various applications of fuzzy control. Its structure and the presented studies include the book in the category of those who make a direct connection between theoretical developments and practical applications, thereby constituting a real support for the specialists in artificial intelligence, modelling and control fields
    • …
    corecore