772 research outputs found

    Event-triggered Pulse Control with Model Learning (if Necessary)

    Full text link
    In networked control systems, communication is a shared and therefore scarce resource. Event-triggered control (ETC) can achieve high performance control with a significantly reduced amount of samples compared to classical, periodic control schemes. However, ETC methods usually rely on the availability of an accurate dynamics model, which is oftentimes not readily available. In this paper, we propose a novel event-triggered pulse control strategy that learns dynamics models if necessary. In addition to adapting to changing dynamics, the method also represents a suitable replacement for the integral part typically used in periodic control.Comment: Accepted final version to appear in: Proc. of the American Control Conference, 201

    Event-triggered Learning

    Full text link
    The efficient exchange of information is an essential aspect of intelligent collective behavior. Event-triggered control and estimation achieve some efficiency by replacing continuous data exchange between agents with intermittent, or event-triggered communication. Typically, model-based predictions are used at times of no data transmission, and updates are sent only when the prediction error grows too large. The effectiveness in reducing communication thus strongly depends on the quality of the prediction model. In this article, we propose event-triggered learning as a novel concept to reduce communication even further and to also adapt to changing dynamics. By monitoring the actual communication rate and comparing it to the one that is induced by the model, we detect a mismatch between model and reality and trigger model learning when needed. Specifically, for linear Gaussian dynamics, we derive different classes of learning triggers solely based on a statistical analysis of inter-communication times and formally prove their effectiveness with the aid of concentration inequalities

    Event-triggered Learning

    Get PDF
    Machine learning has seen many recent breakthroughs. Inspired by these, learningcontrol systems emerged. In essence, the goal is to learn models and control policies for dynamical systems. Dealing with learning-control systems is hard and there are several key challenges that differ from classical machine learning tasks. Conceptually, excitation and exploration play a major role in learning-control systems. On the one hand, we usually aim for controllers that stabilize a system with the goal of avoiding deviations from a setpoint or reference. However, we also need informative data for learning, which is often not the case when controllers work well. Therefore, there is a problem due to the opposing objectives of many control theoretical tasks and the requirements for successful learning outcomes. Additionally, change of dynamics or other conditions is often encountered for control systems in practice. For example, new tasks, changing load conditions, or different external conditions have a substantial influence on the underlying distribution. Learning can provide the flexibility to adapt the behavior of learning-control systems to these events. Since learning has to be applied with sufficient excitation there are many practical situations that hinge on the following problem: "When to trigger learning updates in learning-control systems?" This is the core question of this thesis and despite its relevance, there is no general method that provides an answer. We propose and develop a new paradigm for principled decision making on when to learn, which we call event-triggered learning (ETL). The first triggers that we discuss are designed for networked control systems. All agents use model-based predictions to anticipate the other agents’ behavior which makes communication only necessary when the predictions deviate too much. Essentially, an accurate model can save communication, while a poor model leads to poor predictions and thus frequent updates. The learning triggers are based on the inter-communication times (the time between two communication instances). They are independent and identically distributed random variables, which directly leads to sound guarantees. The framework is validated in experiments and leads to 70% communication savings for wireless sensor networks that monitor human walking. In the second part, we consider optimal control algorithms and start with linear quadratic regulators. A perfect model yields the best possible controller, while poor models result in poor controllers. Thus, by analyzing the control performance, we can infer the model’s accuracy. From a technical point of view, we have to deal with correlated data and work with more sophisticated tools to provide the desired theoretical guarantees. While we obtain a powerful test that is tightly tailored to the problem at hand, it does not generalize to different control architectures. Therefore, we also consider a more general point of view, where we recast the learning of linear systems as a filtering problem. We leverage Kalman filter-based techniques to derive a sound test and utilize the point estimate of the parameters for targeted learning experiments. The algorithm is independent of the underlying control architecture, but demonstrated for model predictive control. Most of the results in the first two parts critically depend on linearity assumptions in the dynamics and further problem-specific properties. In the third part, we take a step back and ask the fundamental question of how to compare (nonlinear) dynamical systems directly from state data. We propose a kernel two-sample test that compares stationary distributions of dynamical systems. Additionally, we introduce a new type of mixing that can directly be estimated from data to deal with the autocorrelations. In summary, this thesis introduces a new paradigm for deciding when to trigger updates in learning-control systems. Additionally, we develop three instantiations of this paradigm for different learning-control problems. Further, we present applications of the algorithms that yield substantial communication savings, effective controller updates, and the detection of anomalies in human walking data

    Event-triggered Learning for Linear Quadratic Control

    Full text link
    When models are inaccurate, the performance of model-based control will degrade. For linear quadratic control, an event-triggered learning framework is proposed that automatically detects inaccurate models and triggers the learning of a new process model when needed. This is achieved by analyzing the probability distribution of the linear quadratic cost and designing a learning trigger that leverages Chernoff bounds. In particular, whenever empirically observed cost signals are located outside the derived confidence intervals, we can provably guarantee that this is with high probability due to a model mismatch. With the aid of numerical and hardware experiments, we demonstrate that the proposed bounds are tight and that the event-triggered learning algorithm effectively distinguishes between inaccurate models and probabilistic effects such as process noise. Thus, a structured approach is obtained that decides when model learning is beneficial.Comment: 13 pages, 8 figures, accepted for publication in IEEE Transactions on Automatic Contro

    Overcoming Bandwidth Limitations in Wireless Sensor Networks by Exploitation of Cyclic Signal Patterns: An Event-triggered Learning Approach

    Get PDF
    Wireless sensor networks are used in a wide range of applications, many of which require real-time transmission of the measurements. Bandwidth limitations result in limitations on the sampling frequency and number of sensors. This problem can be addressed by reducing the communication load via data compression and event-based communication approaches. The present paper focuses on the class of applications in which the signals exhibit unknown and potentially time-varying cyclic patterns. We review recently proposed event-triggered learning (ETL) methods that identify and exploit these cyclic patterns, we show how these methods can be applied to the nonlinear multivariable dynamics of three-dimensional orientation data, and we propose a novel approach that uses Gaussian process models. In contrast to other approaches, all three ETL methods work in real time and assure a small upper bound on the reconstruction error. The proposed methods are compared to several conventional approaches in experimental data from human subjects walking with a wearable inertial sensor network. They are found to reduce the communication load by 60–70%, which implies that two to three times more sensor nodes could be used at the same bandwidth

    Design of Event-Triggered Fault-Tolerant Control for Stochastic Systems with Time-Delays

    Get PDF
    This paper proposes two novel, event-triggered fault-tolerant control strategies for a class of stochastic systems with state delays. The plant is disturbed by a Gaussian process, actuator faults, and unknown disturbances. First, a special case about fault signals that are coupled to the unknown disturbances is discussed, and then a fault-tolerant strategy is designed based on an event condition on system states. Subsequently, a send-on-delta transmission framework is established to deal with the problem of fault-tolerant control strategy against fault signals separated from the external disturbances. Two criteria are provided to design feedback controllers in order to guarantee that the systems are exponentially mean-square stable, and the corresponding H∞-norm disturbance attenuation levels are achieved. Two theorems were obtained by synthesizing the feedback control gains and the desired event conditions in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are provided to illustrate the effectiveness of the proposed theoretical results
    • …
    corecore