15,906 research outputs found

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    A clustering algorithm for multivariate data streams with correlated components

    Get PDF
    Common clustering algorithms require multiple scans of all the data to achieve convergence, and this is prohibitive when large databases, with data arriving in streams, must be processed. Some algorithms to extend the popular K-means method to the analysis of streaming data are present in literature since 1998 (Bradley et al. in Scaling clustering algorithms to large databases. In: KDD. p. 9-15, 1998; O'Callaghan et al. in Streaming-data algorithms for high-quality clustering. In: Proceedings of IEEE international conference on data engineering. p. 685, 2001), based on the memorization and recursive update of a small number of summary statistics, but they either don't take into account the specific variability of the clusters, or assume that the random vectors which are processed and grouped have uncorrelated components. Unfortunately this is not the case in many practical situations. We here propose a new algorithm to process data streams, with data having correlated components and coming from clusters with different covariance matrices. Such covariance matrices are estimated via an optimal double shrinkage method, which provides positive definite estimates even in presence of a few data points, or of data having components with small variance. This is needed to invert the matrices and compute the Mahalanobis distances that we use for the data assignment to the clusters. We also estimate the total number of clusters from the data.Comment: title changed, rewritte
    • …
    corecore