7 research outputs found

    Provably good data-race detector that runs in parallel

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (leaves 47-49).This thesis describes the implementation of a provably good data-race detector, called the Nondeterminator-3, which runs efficiently in parallel. A data race occurs in a multithreaded program when two logically parallel threads access the same location while holding no common locks and at least one of the accesses is a write. The Nondeterminator-3 checks for data races in programs coded in Cilk [3, 10], a shared-memory multithreaded programming language. A key capability of data-race detectors is in determining the series-parallel (SP) relationship between two threads. The Nondeterminator-3 is based on a provably good parallel SP-maintenance algorithm known as SP-hybrid [2]. For a program with n threads, T1 work, and critical-path length To, the SP-hybrid algorithm runs in O((T1/P + PTO) lg n) expected time when executed on P processors. A data-race detector must also maintain an access-history, which consists of, for each shared memory location, a representative subset of memory accesses to that location. The Nondeterminator-3 uses an extension of the ALL-SETS [4] access-history algorithm used by its serially running predecessor, the Nondeterminator-2. First, the ALL-SETS algorithm was extended to correctly support the inlet feature of Cilk.(cont.) This extension increases the memory-access cost by only a constant factor. Then, this extended ALL-SETS algorithm was parallelized, so that it can be combined with the SP-hybrid algorithm to obtain a data-race detector. Assuming that the cost of locking the access-history can be ignored, this parallelization also inflates the memory-access cost by only a constant factor. I tested the Nondeterminator-3 on several programs to verify the accuracy of the implementation. I have also observed that the Nondeterminator-3 achieves good speed-up when run on a multiprocessor machine.by Tushara C. Karunaratna.M.Eng

    Algorithms for data-race detection in multithreaded programs

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 69-71).by Guang-Ien Cheng.M.Eng

    Debugging multithreaded programs that incorporate user-level locking

    Get PDF
    Thesis (S.B. and M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 119-124).by Andrew F. Stark.S.B.and M.Eng

    Provably good race detection that runs in parallel

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 93-98).A multithreaded parallel program that is intended to be deterministic may exhibit nondeterminism clue to bugs called determinacy races. A key capability of race detectors is to determine whether one thread executes logically in parallel with another thread or whether the threads must operate in series. This thesis presents two algorithms, one serial and one parallel, to maintain the series-parallel (SP) relationships "on the fly" for fork-join multithreaded programs. For a fork-join program with T1 work and a critical-path length of T[infinity], the serial SP-Maintenance algorithm runs in O(T1) time. The parallel algorithm executes in the nearly optimal O(T1/P + PT[infinity]) time, when run on P processors and using an efficient scheduler. These SP-maintenance algorithms can be incorporated into race detectors to get a provably good race detector that runs in parallel. This thesis describes an efficient parallel race detector I call Nondeterminator-3. For a fork-join program T1 work, critical-path length T[infinity], and v shared memory locations, the Nondeterminator-3 runs in O(T1/P + PT[infinity] lg P + min [(T1 lg P)/P, vT[infinity] Ig P]) expected time, when run on P processors and using an efficient scheduler.by Jeremy T. Fineman.S.M

    Dynamic Data Race Detection for Structured Parallelism

    Get PDF
    With the advent of multicore processors and an increased emphasis on parallel computing, parallel programming has become a fundamental requirement for achieving available performance. Parallel programming is inherently hard because, to reason about the correctness of a parallel program, programmers have to consider large numbers of interleavings of statements in different threads in the program. Though structured parallelism imposes some restrictions on the programmer, it is an attractive approach because it provides useful guarantees such as deadlock-freedom. However, data races remain a challenging source of bugs in parallel programs. Data races may occur only in few of the possible schedules of a parallel program, thereby making them extremely hard to detect, reproduce, and correct. In the past, dynamic data race detection algorithms have suffered from at least one of the following limitations: some algorithms have a worst-case linear space and time overhead, some algorithms are dependent on a specific scheduling technique, some algorithms generate false positives and false negatives, some have no empirical evaluation as yet, and some require sequential execution of the parallel program. In this thesis, we introduce dynamic data race detection algorithms for structured parallel programs that overcome past limitations. We present a race detection algorithm called ESP-bags that requires the input program to be executed sequentially and another algorithm called SPD3 that can execute the program in parallel. While the ESP-bags algorithm addresses all the above mentioned limitations except sequential execution, the SPD3 algorithm addresses the issue of sequential execution by scaling well across highly parallel shared memory multiprocessors. Our algorithms incur constant space overhead per memory location and time overhead that is independent of the number of processors on which the programs execute. Our race detection algorithms support a rich set of parallel constructs (including async, finish, isolated, and future) that are found in languages such as HJ, X10, and Cilk. Our algorithms for async, finish, and future are precise and sound for a given input. In the presence of isolated, our algorithms are precise but not sound. Our experiments show that our algorithms (for async, finish, and isolated) perform well in practice, incurring an average slowdown of under 3x over the original execution time on a suite of 15 benchmarks. SPD3 is the first practical dynamic race detection algorithm for async-finish parallel programs that can execute the input program in parallel and use constant space per memory location. This takes us closer to our goal of building dynamic data race detectors that can be "always-on" when developing parallel applications

    Cilk : efficient multithreaded computing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 170-179).by Keith H. Randall.Ph.D
    corecore