66,137 research outputs found

    Scalable distributed event detection for Twitter

    Get PDF
    Social media streams, such as Twitter, have shown themselves to be useful sources of real-time information about what is happening in the world. Automatic detection and tracking of events identified in these streams have a variety of real-world applications, e.g. identifying and automatically reporting road accidents for emergency services. However, to be useful, events need to be identified within the stream with a very low latency. This is challenging due to the high volume of posts within these social streams. In this paper, we propose a novel event detection approach that can both effectively detect events within social streams like Twitter and can scale to thousands of posts every second. Through experimentation on a large Twitter dataset, we show that our approach can process the equivalent to the full Twitter Firehose stream, while maintaining event detection accuracy and outperforming an alternative distributed event detection system

    Event Detection in Social Streams

    Full text link

    Event detection and user interest discovering in social media data streams

    Get PDF
    Social media plays an increasingly important role in peopleā€™s life. Microblogging is a form of social media which allows people to share and disseminate real-life events. Broadcasting events in microblogging networks can be an effective method of creating awareness, divulging important information and so on. However, many existing approaches at dissecting the information content primarily discuss the event detection model and ignore the user interest which can be discovered during event evolution. This leads to difficulty in tracking the most important events as they evolve including identifying the influential spreaders. There is further complication given that the influential spreaders interests will also change during event evolution. The influential spreaders play a key role in event evolution and this has been largely ignored in traditional event detection methods. To this end, we propose a user-interest model based event evolution model, named the HEE (Hot Event Evolution) model. This model not only considers the user interest distribution, but also uses the short text data in the social network to model the posts and the recommend methods to discovering the user interests. This can resolve the problem of data sparsity, as exemplified by many existing event detection methods, and improve the accuracy of event detection. A hot event automatic filtering algorithm is initially applied to remove the influence of general events, improving the quality and efficiency of mining the event. Then an automatic topic clustering algorithm is applied to arrange the short texts into clusters with similar topics. An improved user-interest model is proposed to combine the short texts of each cluster into a long text document simplifying the determination of the overall topic in relation to the interest distribution of each user during the evolution of important events. Finally a novel cosine measure based event similarity detection method is used to assess correlation between events thereby detecting the process of event evolution. The experimental results on a real Twitter dataset demonstrate the efficiency and accuracy of our proposed model for both event detection and user interest discovery during the evolution of hot events.N/

    Social Event Detection via sparse multi-modal feature selection and incremental density based clustering

    No full text
    Combining items from social media streams, such as Flickr photos and Twitter tweets, into meaningful groups can help users contextu- alise and effectively consume the torrents of information now made available on the social web. This task is made challenging due to the scale of the streams and the inherently multimodal nature of the information to be contextualised. We present a methodology which approaches social event detection as a multi-modal clustering task. We address the various challenges of this task: the selection of the features used to compare items to one another; the construction of a single sparse affinity matrix; combining the features; relative importance of features; and clustering techniques which produce meaningful item groups whilst scaling to cluster large numbers of items. In our best tested configuration we achieve an F1 score of 0.94, showing that a good compromise between precision and recall of clusters can be achieved using our technique

    Event Detection from Social Media Stream: Methods, Datasets and Opportunities

    Full text link
    Social media streams contain large and diverse amount of information, ranging from daily-life stories to the latest global and local events and news. Twitter, especially, allows a fast spread of events happening real time, and enables individuals and organizations to stay informed of the events happening now. Event detection from social media data poses different challenges from traditional text and is a research area that has attracted much attention in recent years. In this paper, we survey a wide range of event detection methods for Twitter data stream, helping readers understand the recent development in this area. We present the datasets available to the public. Furthermore, a few research opportunitiesComment: 8 page

    Human-Centric Cyber Social Computing Model for Hot-Event Detection and Propagation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Microblogging networks have gained popularity in recent years as a platform enabling expressions of human emotions, through which users can conveniently produce contents on public events, breaking news, and/or products. Subsequently, microblogging networks generate massive amounts of data that carry opinions and mass sentiment on various topics. Herein, microblogging is regarded as a useful platform for detecting and propagating new hot events. It is also a useful channel for identifying high-quality posts, popular topics, key interests, and high-influence users. The existence of noisy data in the traditional social media data streams enforces to focus on human-centric computing. This paper proposes a human-centric social computing (HCSC) model for hot-event detection and propagation in microblogging networks. In the proposed HCSC model, all posts and users are preprocessed through hypertext induced topic search (HITS) for determining high-quality subsets of the users, topics, and posts. Then, a latent Dirichlet allocation (LDA)-based multiprototype user topic detection method is used for identifying users with high influence in the network. Furthermore, an influence maximization is used for final determination of influential users based on the user subsets. Finally, the users mined by influence maximization process are generated as the influential user sets for specific topics. Experimental results prove the superiority of our HCSC model against similar models of hot-event detection and information propagation
    • ā€¦
    corecore