163 research outputs found

    An efficient and fair reliable multicast protocol for 802.11-based wireless LANs

    Get PDF
    Many applications are inherently multicast in nature. Such applications can benefit tremendously from reliable multicast support at the MAC layer since addressing reliability at the MAC level is much less expensive than handling errors at the upper layers. However, the IEEE 802.11 MAC layer does not support reliable multicast. This void in the MAC layer is a limiting factor in the efficacy of multicast applications. In this work, we propose a Slot Reservation based Reliable Multicast protocol that adds a novel reliability component to the existing multicast protocol in the 802.11 MAC. Our protocol builds on the existing DCF support in the IEEE 802.11 MAC to seamlessly incorporate an efficient reliable multicast mechanism. Intelligent assignment of transmission slots, minimal control packet overhead and an efficient retransmission strategy form the basis of our protocol. We evaluate the performance of our protocol through extensive simulations. Our simulation results show that our protocol outperforms another reliable multicast protocol, Batch Mode Multicast MAC, in terms of delivered throughput in various scenarios. We enhance our protocol to add a fairness component in the presence of parallel unicast and multicast flows and provide unicast friendly multicast operation. We then evaluate the performance of our Slot Reservation Based Reliable Multicast Protocol with Fairness through extensive simulations and see that the scheme ensures fairness among parallel unicast and multicas

    Performance improvement in mobile ad-hoc networks.

    Get PDF
    The objective of this research is to enhance the network performance under realistic mobile ad-hoc networks environments without modification of the standard. Overview of this research is summarized as follows: First, a packet-fragmentation technique to improve network throughput under the worst channel conditions is proposed. While the conventional packet-fragmentation technique research focuses only on random-bit errors, the proposed technique employs both random bit errors and hidden-node collisions. The analytical models based on Markov-chain model shows that the optimal fragmentation technique can effectively reduce the number of retransmissions caused by both collisions from hidden nodes and corrupted packets by random bit errors, and eventually improving throughput in noisy VANETs channels. As a second contribution, a dynamic service-channel allocation (DSCA) scheme is proposed to maximize the network throughput by dynamically assigning different service channels to the users. The theoretical analysis in this thesis will consider wireless access in the vehicular environment (WAVE) protocol, which is the main characteristic of the vehicular ad-hoc networks standard (the IEEE 802.11p). To summarize, the main contribution of this research is that two schemes will improve the network throughput significantly without modification of the standard. Therefore, there is no implementation issue to deploy the proposed schemes in real devices.PhDCommittee Chair: Copeland, John; Committee Co-Chair: Chang, Yusun; Committee Member: Ammar, Mostafa; Committee Member: Beyah, Raheem; Committee Member: Owen, Henry; Committee Member: Taylor, Davi

    Circularity-Based Medium Access Control in Mobile Ad Hoc Networks

    Full text link

    Mobile ad hoc networks for intelligent systems

    Get PDF
    Advances in wireless technology and portable computing along with demands for high user mobility have provided a major promotion toward the development of ad hoc networks. Mobile ad hoc networks feature dynamic topology, self-organization, limited bandwidth and battery power of a node. They do not rely on specialized routers for path discovery and traffic routing. Research on ad hoc networks has been extensively investigated in the past few years and related work has focused on many of the layers of the communications architecture. This research intends to investigate applications of MANET for intelligent systems, including intelligent transportation system (ITS), sensor network and mobile intelligent robot network, and propose some approaches to topology management, link layer multiple access and routing algorithms. Their performance is evaluated by theoretical analysis and off-the-shelf simulation tools. Most current research on ad hoc networks assumes the availability of IEEE 802.11. However, the RTS/CTS protocol of 802.11 still leads to packet collision which in turn decreases the network throughput and lifetime. For sensor networks, sensors are mostly battery operated. Hence, resolving packet collision may improve network lifetime by saving valuable power. Using space and network diversity combination, this work proposes a new packet separation approach to packet collision caused by masked nodes. Inter-vehicle communication is a key component of ITS and it is also called vehicular ad hoc network. VANET has many features different from regular MANETs in terms of mobility, network size and connectivity. Given rapid topology changes and network partitioning, this work studies how to organize the numerous vehicular nodes and establish message paths between any pair of vehicular nodes if they are not apart too far away. In urban areas, the inter-vehicle communication has different requirements and constraints than highway environments. The proposed position-based routing strategy for VANETs utilizes the traffic pattern in city environments. Packets are forwarded based on traffic lights timing sequence and the moving direction of relaying vehicles. A multicast protocol is also introduced to visualize the real time road traffic with customized scale. Only vehicles related to a source node\u27s planned trajectory will reply the query packet. The visualized real time traffic information therefore helps the driver make better decision in route planning when traffic congestion happens. Nowadays robots become more and more powerful and intelligent. They can take part in operations in a cooperative manner which makes distributed control necessary. Ad hoc robot communication network is still fresh field for researchers working on networking technology. This work investigates some key issues in robot ad hoc network and evaluate the challenges while establishing robot ad hoc networks

    Adaptive Scheduling in MIMO-based Heterogeneous Ad hoc Networks

    Get PDF
    Abstract-The demands for data rate and transmission reliability constantly increase with the explosive use of wireless devices and the advancement of mobile computing techniques. Multiple-input and multiple-output (MIMO) technique is considered as one of the most promising wireless technologies that can significantly improve transmission capacity and reliability. Many emerging mobile wireless applications require peer-to-peer transmissions over an ad hoc network, where the nodes often have different number of antennas, and the channel condition and network topology vary over time. It is important and challenging to develop efficient schemes to coordinate transmission resource sharing among a heterogeneous group of nodes over an infrastructure-free mobile ad hoc network. In this work, we propose a holistic scheduling algorithm that can adaptively select different transmission strategies based on the node types and channel conditions to effectively relieve the bottleneck effect caused by nodes with smaller antenna arrays, and avoid the transmission failure due to the violation of lower degree of freedom constraint resulted from the channel dependency. The algorithm also takes advantage of channel information to opportunistically schedule cooperative spatial multiplexed transmissions between nodes and provide special transmission support for higher priority nodes with weak channels, so that the data rate of the network can be maximized while user transmission quality requirement is supported. The performance of our algorithm is studied through extensive simulations and the results demonstrate that our algorithm is very effective in handling node heterogeneity and channel constraint, and can significantly increase the throughput while reducing the transmission delay

    H-NAMe: a hidden-node avoidance mechanism for wireless sensor networks

    Get PDF
    The hidden-node problem has been shown to be a major source of Quality-of-Service (QoS) degradation in Wireless Sensor Networks (WSNs) due to factors such as the limited communication range of sensor nodes, link asymmetry and the characteristics of the physical environment. In wireless contention-based Medium Access Control protocols, if two nodes that are not visible to each other transmit to a third node that is visible to the formers, there will be a collision – usually called hidden-node or blind collision. This problem greatly affects network throughput, energy-efficiency and message transfer delays, which might be particularly dramatic in large-scale WSNs. This paper tackles the hiddennode problem in WSNs and proposes H-NAMe, a simple yet efficient distributed mechanism to overcome it. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes and then scales to multiple clusters via a cluster grouping strategy that guarantees no transmission interference between overlapping clusters. We also show that the H-NAMe mechanism can be easily applied to the IEEE 802.15.4/ZigBee protocols with only minor add-ons and ensuring backward compatibility with the standard specifications. We demonstrate the feasibility of H-NAMe via an experimental test-bed, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. We believe that the results in this paper will be quite useful in efficiently enabling IEEE 802.15.4/ZigBee as a WSN protoco

    Resilience of Wireless Ad Hoc Federated Learning against Model Poisoning Attacks

    Full text link
    Wireless ad hoc federated learning (WAFL) is a fully decentralized collaborative machine learning framework organized by opportunistically encountered mobile nodes. Compared to conventional federated learning, WAFL performs model training by weakly synchronizing the model parameters with others, and this shows great resilience to a poisoned model injected by an attacker. In this paper, we provide our theoretical analysis of the WAFL's resilience against model poisoning attacks, by formulating the force balance between the poisoned model and the legitimate model. According to our experiments, we confirmed that the nodes directly encountered the attacker has been somehow compromised to the poisoned model but other nodes have shown great resilience. More importantly, after the attacker has left the network, all the nodes have finally found stronger model parameters combined with the poisoned model. Most of the attack-experienced cases achieved higher accuracy than the no-attack-experienced cases.Comment: 10 pages, 7 figures, to be published in IEEE International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications 202

    Comparison Between Reactive and Proactive Protocols of Wireless Sensor Networks: Railway Application

    Get PDF
    Railway is a critical application; hence, all systems that compose the railway infrastructure must meet two conditions: availability and safety. The availability ensures continuous operation of the system; on the other hand, safety is achieved when the device works properly regardless of the environmental or operating conditions. In addition, Wireless Sensor Networks (WSN) are used to perform tasks previously performed manually. However, it is necessary to analyse what protocol is appropriate for the railway industry, since availability and safety are the required attributes. In this work, a recently proposed routing protocol, the Multi-Parent Hierarchical (MPH), has been compared with a well-known protocol, the Ad-hoc On-Demand Distance Vector (AODV), in order to find the most suitable one for the railway applications. For this purpose, a simulator has been developed, which faithfully reifies the workings of a given protocol, considering a fixed, reconfigurable ad-hoc network given by the number and location of participants, and general network conditions.</p
    • …
    corecore