2 research outputs found

    Gaze estimation problem tackled through synthetic images

    Get PDF
    In this paper, we evaluate a synthetic framework to be used in the field of gaze estimation employing deep learning techniques. The lack of sufficient annotated data could be overcome by the utilization of a synthetic evaluation framework as far as it resembles the behavior of a real scenario. In this work, we use U2Eyes synthetic environment employing I2Head datataset as real benchmark for comparison based on alternative training and testing strategies. The results obtained show comparable average behavior between both frameworks although significantly more robust and stable performance is retrieved by the synthetic images. Additionally, the potential of synthetically pretrained models in order to be applied in user's specific calibration strategies is shown with outstanding performances.Comment: https://dl.acm.org/doi/abs/10.1145/3379156.339136

    VAE-Info-cGAN: Generating Synthetic Images by Combining Pixel-level and Feature-level Geospatial Conditional Inputs

    Full text link
    Training robust supervised deep learning models for many geospatial applications of computer vision is difficult due to dearth of class-balanced and diverse training data. Conversely, obtaining enough training data for many applications is financially prohibitive or may be infeasible, especially when the application involves modeling rare or extreme events. Synthetically generating data (and labels) using a generative model that can sample from a target distribution and exploit the multi-scale nature of images can be an inexpensive solution to address scarcity of labeled data. Towards this goal, we present a deep conditional generative model, called VAE-Info-cGAN, that combines a Variational Autoencoder (VAE) with a conditional Information Maximizing Generative Adversarial Network (InfoGAN), for synthesizing semantically rich images simultaneously conditioned on a pixel-level condition (PLC) and a macroscopic feature-level condition (FLC). Dimensionally, the PLC can only vary in the channel dimension from the synthesized image and is meant to be a task-specific input. The FLC is modeled as an attribute vector in the latent space of the generated image which controls the contributions of various characteristic attributes germane to the target distribution. An interpretation of the attribute vector to systematically generate synthetic images by varying a chosen binary macroscopic feature is explored. Experiments on a GPS trajectories dataset show that the proposed model can accurately generate various forms of spatio-temporal aggregates across different geographic locations while conditioned only on a raster representation of the road network. The primary intended application of the VAE-Info-cGAN is synthetic data (and label) generation for targeted data augmentation for computer vision-based modeling of problems relevant to geospatial analysis and remote sensing.Comment: 10 pages, 4 figures, Peer-reviewed and accepted version of the paper published at the 13th ACM SIGSPATIAL International Workshop on Computational Transportation Science (IWCTS 2020
    corecore