3 research outputs found

    Multimodal Investigation of the Efficiency and Stability of Microstimulation using Electrodes Coated with PEDOT/CNT and Iridium Oxide

    Get PDF
    Electrical microstimulation is an invaluable tool in neuroscience research to dissect neural circuits, relate brain areas, and identify relationships between brain structure and behavior. In the clinic, electrical microstimulation has enabled partial restoration of vision, movement, sensation and autonomic functions. Recently, novel materials and new fabrication techniques of traditional metals have emerged such as iridium oxide and the conducting polymer PEDOT/CNT. These materials have demonstrated particular promise in the improvement in electrical efficiency. However, the in vivo stimulation efficiency and the in vivo stability of these materials have not been thoroughly characterized. In this dissertation, we use a multimodal approach to study the efficiency and stability of electrode-tissue interface using novel materials in microstimulation

    Evaluation of effects of electrical stimulation in the retina with optical coherence tomography

    No full text

    Towards clinical trials of a novel Bionic Eye: Building evidence of safety and efficacy

    Get PDF
    In the quest for therapeutic solutions for the visually impaired, electrical stimulation of the retina is, and has been, the focus of intense research. Some of these efforts have led to the development of the Phoenix99 Bionic Eye, a device which combines promising technological features with novel stimulation strategies. For medical devices, considerable challenges must be overcome before they’re allowed to be trialled in their target population. The requirements for a study to be performed include the demonstration of a positive risk-benefit ratio of the research. The present dissertation is an attempt to address how pre-clinical trials in animals can be used to understand and minimise risks. A positive risk-benefit ratio means that the potential benefits of the research outweigh the risks of the intervention. In the case of retinal prostheses, the risks include the surgical intervention, the immune response to the device, the safety of the electrical stimuli, and the effects of device ageing. In this work, successful demonstration of the surgical safety and biocompatibility of passive Phoenix99 devices during long-term implantation in sheep called for the evaluation of the chronic effects of the novel stimulation paradigms it can deliver. As preparation for this study, the techniques used to evaluate the safety and efficacy of the stimuli in animals were refined. A systematic approach to minimise the impact of anaesthesia on the experimental results is presented, as well as a novel in vivo retinal recording technique. To maximise the clinical relevance of all animal trials, a computer model for the prediction of thresholds was developed. Finally, in vitro device ageing was performed to deepen our understanding of the design’s potential for long-term implantation. Protocols for a long-term device safety study in sheep and for an acute human trial are also presented, thus taking concrete and sensible steps towards the first clinical use of the Phoenix99 Bionic Eye
    corecore