156 research outputs found

    LTE SFBC MIMO Transmitter Modelling and Performance Evaluation

    Full text link
    High data rates are one of the most prevalent requirements in current mobile communications. To cover this and other high standards regarding performance, increasing coverage, capacity, and reliability, numerous works have proposed the development of systems employing the combination of several techniques such as Multiple Input Multiple Output (MIMO) wireless technologies with Orthogonal Frequency Division Multiplexing (OFDM) in the evolving 4G wireless communications. Our proposed system is based on the 2x2 MIMO antenna technique, which is defined to enhance the performance of radio communication systems in terms of capacity and spectral efficiency, and the OFDM technique, which can be implemented using two types of sub-carrier mapping modes: Space-Time Block Coding and Space Frequency Block Code. SFBC has been considered in our developed model. The main advantage of SFBC over STBC is that SFBC encodes two modulated symbols over two subcarriers of the same OFDM symbol, whereas STBC encodes two modulated symbols over two subcarriers of the same OFDM symbol; thus, the coding is performed in the frequency domain. Our solution aims to demonstrate the performance analysis of the Space Frequency Block Codes scheme, increasing the Signal Noise Ratio (SNR) at the receiver and decreasing the Bit Error Rate (BER) through the use of 4 QAM, 16 QAM and 64QAM modulation over a 2x2 MIMO channel for an LTE downlink transmission, in different channel radio environments. In this work, an analytical tool to evaluate the performance of SFBC - Orthogonal Frequency Division Multiplexing, using two transmit antennas and two receive antennas has been implemented, and the analysis using the average SNR has been considered as a sufficient statistic to describe the performance of SFBC in the 3GPP Long Term Evolution system over Multiple Input Multiple Output channels.Comment: 11 pages, 20 figures, 5 table

    Space-time-frequency block codes for MIMO-OFDM in next generation wireless systems

    Get PDF
    In this thesis the use of space-frequency block codes (SFBC) and space-time-frequency block codes (STFBC) in wireless systems are investigated. A variety of SFBC and STFBC schemes are proposed for particular propagation scenarios and system settings where each has its own advantages and disadvantages. The objective is to pro-pose coding strategies with improved flexibility, feasibility and spectral efficiency,and reduce the decoding complexity in an MIMO-OFDM system. Firstly an efficient SFBC with improved system performance is proposed for MIMO-OFDM systems. The proposed SFBC incorporates the concept of matched rotation precoding (MRP) to achieve full transmit diversity and optimal system performance foran arbitrary numberoftransmitantennas,subcarrierinterval andsubcarriergrouping. The MRP is proposed to exploit the inherent rotation and repetition properties of SFBC, arising from the channel power delay profile, in order to fully capture both space and frequency diversity of SFBC in a MIMO-OFDM system. It is able to relax restrictions on subcarrier interval and subcarrier grouping, making it ideal for adaptive/time-varying systems or multiuser systems. The SFBC without an optimization process is unstable in terms of achievable system performance and diversity order, and also risks diversity loss within a specific propagation scenario. Such loss or risk is prominent while wireless propagation channel has a limited number of dominant paths, e.g. relatively close to transmitters or relatively flat topography. Hence in orderto improve the feasibility of SFBC in dynamic scenarios, the lower bound of the coding gain for MRP is derived. The SFBC with MRP is proposed for more practical scenarios when only partial channel power delay profile information is known at the transmit end, for example the wireless channel has dominant propagation paths. The proposed rate one MRP has a relatively simple optimization process that can be transformed into an explicit diagram and hence an optimal result can be derived intuitively without calculations. Next, a multi-rate transmission strategy is proposed for both SFBCand STFBC to balance the system performance and transmission rate. A variety of rate adaptive coding matrices are obtained by a simple truncation of the coding matrix, or by parameter optimization for coding matrices for a given transmission rate and constellation. Pro-posed strategy can easily and gradually adjust the achievable diversity order. As a result it is capable of achieving a relatively smooth balance between system performance and transmission rate in both SFBC and STFBC, without a significant change of coding structure or constellation size. Such tradeoff would be useful to maintain stable Quality of Service (QoS) for users by providing more scalability of achievable performance in a time-varying channel. Finally the decoding procedure of space-time block code (STBC), SFBCand STFBC is discussed. The decoding of all existing STBC/SFBC/STFBC is unified at first, in order to show a concise procedure and make fair comparisons. Then maximum likelihood decoding (MLD) and arbitrary sphere decoding (SD) can be adopted. To reduce the complexity of decoding further, a novel decoding method called compensation de-coding (CD) is presented for a given space-time-frequency coding scheme. By taking advantage of the simplicity of zero-forcing decoding (ZFD) we are able to calculate a compensation vector for the output of ZFD. After modification by utilizing the com-pensation vector, the BER performance can be improved significantly. The decoding procedure is relatively simple and is independent of the constellation size. The per-formance of the proposed decoding method is close to maximum-likelihood decoding for low to medium SNR. A low complexity detection scheme, classifier based decoding (CBD), is further proposed for MIMO systems incorporating spatial multiplexing. The CBD is a hybrid of an equalizer-based technique and an algorithmic search stage. Based on an error matrix and its probability density functions for different classes of error, a particular search region is selected for the algorithmic stage. As the probability of occurrence of error classes with larger search regions is small, overall complexity of the proposed technique remains low, whilst providing a significant improvement in the bit error rate performance

    Quasi-orthogonal SFBC for monostatic MIMO ISAC scenarios

    Get PDF
    This paper studies the performance of the quasi-orthogonal Tirkkonen spatial-frequency block code (SFBC) for integrated sensing and communication (ISAC) scenarios. The considered scenario is a MIMO monostatic ISAC base station (BS), where transmitter and radar antenna arrays are co-located enabling the virtual array concept. The quasi-orthogonal Tirkkonen SFBC is encapsulated in an OFDM waveform, the radar processing is performed over the resulting OFDM frame. The performance in terms of radar and communication metrics of Tirkkonen SFBC is presented and compared with orthogonal Alamouti SFBC and the spectrally interleaved waveform approach, widely used in radar-like scenarios. The resulting Mean Square Error (MSE) of the Angle of Arrival (AoA) is chosen as the radar metric while the bit-error-rate (BER) is used to present the communication performance. The results show that Tirkkonen is a good candidate for future ISAC scenarios.publishe

    Mitigating PAPR in cooperative wireless networks with frequency selective channels and relay selection

    Get PDF
    The focus of this thesis is peak-to-average power ratio (PAPR) reduction in cooperative wireless networks which exploit orthogonal frequency division multiplexing in transmission. To reduce the PAPR clipping is employed at the source node. The first contribution focuses upon an amplify-and-forward (AF) type network with four relay nodes which exploits distributed closed loop extended orthogonal space frequency block coding to improve end-to-end performance. Oversampling and filtering are used at the source node to reduce out-of-band interference and the iterative amplitude reconstruction decoding technique is used at the destination node to mitigate in-band distortion which is introduced by the clipping process. In addition, by exploiting quantized group feedback and phase rotation at two of the relay nodes, the system achieves full cooperative diversity in addition to array gain. The second contribution area is outage probability analysis in the context of multi-relay selection in a cooperative AF network with frequency selective fading channels. The gains of time domain multi-path fading channels with L paths are modeled with an Erlang distribution. General closed form expressions for the lower and upper bounds of outage probability are derived for arbitrary channel length L as a function of end-to-end signal to noise ratio. This analysis is then extended for the case when single relay selection from an arbitrary number of relay nodes M is performed. The spatial and temporal cooperative diversity gain is then analysed. In addition, exact form of outage probability for multi-path channel length L = 2 and selecting the best single relay from an arbitrary number of relay nodes M is obtained. Moreover, selecting a pair of relays when L = 2 or 3 is additionally analysed. Finally, the third contribution context is outage probability analysis of a cooperative AF network with single and two relay pair selection from M available relay nodes together with clipping at the source node, which is explicitly modelled. MATLAB and Maple software based simulations are employed throughout the thesis to support the analytical results and assess the performance of algorithms and methods

    Investigation of Channel Adaptation and Interference for Multiantenna OFDM

    Get PDF
    corecore