2 research outputs found

    Beyond illumination: An interactive simulation framework for non-visual and perceptual aspects of daylighting performance

    Get PDF
    This paper presents a proof-of-concept for a goal-based simulation structure that could offer design support for daylighting performance aspects beyond conventional ones such as illumination, glare or solar gains. The framework uses a previously established visualization platform that simultaneously and interactively displays time-based daylighting performance alongside renderings, and relies on a goal-based approach. Two novel performance aspects are investigated in the present paper: health and delight. For the first aspect, drawing from the latest findings in photobiology in terms of effects on sleep, health and well-being, the goal is to integrate time-dependencies of non-visual responses to light into a dynamic light-response model for the non-visual system that can be part of a design process. For the second, the goal is to deepen our understanding of the perceptual qualities of daylight through a dynamic analysis of spatial contrast and its variability over time. The two approaches discussed in this paper introduce a new framework for the Lightsolve simulation environment that includes a Radiance calculation engine combined with an interactive visualization platform for temporal and spatial ‘distribution’ of performance

    Unweaving the human response in daylighting design

    Get PDF
    Daylighting as a research topic situates itself at the interface between psycho-physiological and environmental factors, bringing together questions relevant to architectural design and building engineering, but also to human physiology and behavior. While daylighting has a strong impact on human health and well-being, and an undeniable association with (subjective) emotional delight and perceived quality of a space, it is also highly dynamic and variable in nature, based on a combination of predictable (sun course) and stochastic (weather) patterns. This makes it both a challenging and essential aspect of how “performative” a space can be considered. This paper aims to discuss selected research developments regarding how architectural engineering and other domains of science could be more strongly bridged to address the need for meaningful decision support in daylighting design: how can we better integrate the complexity of human needs in buildings into effective design strategies for daylit spaces? As a basis for discussion and to illustrate this overview, it describes a unified goal-based approach in an attempt to address the multiplicity of perspectives from which daylighting performance can – and should – be evaluated in building design. Through five very different perspectives ranging from task-driven illumination or comfort to human-driven health and perception, it proposes a simulation and visualization framework in which one can start approaching these from an integrated approach
    corecore