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ABSTRACT 
This paper presents a proof-of-concept for a goal-
based simulation structure that could offer design 
support for daylighting performance aspects beyond 
conventional ones such as illumination, glare or solar 
gains. The framework uses a previously established 
visualization platform that simultaneously and 
interactively displays time-based daylighting 
performance alongside renderings, and relies on a 
goal-based approach. Two novel performance aspects 
are investigated in the present paper: health and 
delight. For the first aspect, drawing from the latest 
findings in photobiology in terms of effects on sleep, 
health and well-being, the goal is to integrate time-
dependencies of non-visual responses to light into a 
dynamic light-response model for the non-visual 
system that can be part of a design process. For the 
second, the goal is to deepen our understanding of 
the perceptual qualities of daylight through a 
dynamic analysis of spatial contrast and its variability 
over time.  
The two approaches discussed in this paper introduce 
a new framework for the Lightsolve simulation 
environment that includes a Radiance calculation 
engine combined with an interactive visualization 
platform for temporal and spatial ‘distribution’ of 
performance. 

INTRODUCTION 
Architects are increasingly using digital tools during 
the design process, particularly as they approach 
complex problems such as designing for successful 
daylighting performance. Building simulation models 
for daylighting have traditionally been developed to 
either evaluate task performance through workplane 
illuminance calculation (Mardaljevic et al., 2009), 
energy impacts of daylight such as active electric 
lighting, heating or cooling needs to compensate for 
excessive or insufficient daylight (IEA, 2008), or its 
impact on comfort and in particular on glare-based 
sources of discomfort within the visual field 
(Wienold, 2009).  
Yet daylighting is known to be a field where strictly 
defined numerical boundaries are not strictly 
enforced: there is a vast range of parameters and 
values that contribute to “good” daylighting design 
and which make absolute performance targets of 

questionable relevance. To assist architectural 
designers in searching for “better” solutions to 
support a more flexible, user-centered approach, an 
annual daylighting simulation method was developed 
in 2008 (Andersen et al., 2008), called Lightsolve, 
meant to be used in the early design process 
(Andersen et al., submitted) when façade and space 
details are still being defined. Lightsolve took a new 
perspective on daylighting analysis, focusing on the 
variation of daylight performance over the day and 
the year by combining temporal performance 
visualization with spatial renderings (Kleindienst & 
Andersen, 2012). This simulation method included 
an expert system to support a guided search process 
and differed from previous approaches (Paule et al., 
2011; Ochoa & Capeluto, 2009) in that it allowed a 
comprehensive understanding of daylighting and 
offered user interactivity regarding design choices 
(Gagne et al., 2011). One of the underlying principles 
in how daylighting performance is evaluated in 
Lightsolve is to make the results specific to the user’s 
own performance objectives and to his or her chosen 
areas of interest within the considered design project.  
On the other hand, it combines a synthetic 
perspective of full-year data with a visual impression 
of what the space looks like over time.  
These two foundations provided a powerful basis 
upon which to build when considering the inclusion 
of qualitative or physiological aspects also inherent 
to daylight performance, yet not as easily associated 
with absolute thresholds of “good” versus “bad”. The 
two new performance aspects investigated here as 
potential complementary drivers for design decisions 
relate on one hand to the non-visual effects of light 
and on the other hand to its perceptual qualities 
regarding contrast. 

Foundations for non-visual effects 
In addition to stimulating visual responses, light can 
induce non-visual responses both through its phase 
shifting effects on the circadian clock and through 
direct activating effects (Cajochen et al., 2000; 
Zeitzer et al., 2000). These effects are mediated 
primarily via a novel non-rod, non-cone 
photoreceptor, which is most sensitive to blue light 
and exhibits different sensitivity to the intensity, 
spectrum, duration/pattern, timing and history of 
exposure as compared to visual responses (Lockley, 
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2009). The discovery of this novel photoreceptor, the 
intrinsically photosensitive retinal ganglion cell 
(ipRGC), has led to consideration of the non-visual 
effects of light as an important element of healthy 
lighting design in addition to vision (Webb, 2006; 
Pechacek et al., 2008). 
In a recent field study, the effects of exposure to 
blue-enriched white light during daytime work hours 
were investigated in comparison to white light (Viola 
et al., 2008). Blue-enriched white light improved 
subjective alertness, performance, mood, and sleep 
quality. This suggests that blue-enriched white light 
in real-world settings can have beneficial effects for 
people working normal office hours, which makes it 
an appealing alternative to enhance alertness. 
Another study, where subjects were exposed to two 
realistic office lighting conditions for two consecutive 
days, reported higher subjective alertness in the 
afternoon in response to prior bright daylighting 

condition (~1000lx) compared to typical artificial 
lighting condition (~180lx) (Münch et al., 2012). 
Before application of these new findings, however, it 
is necessary first to understand the dynamic 
relationship between light and human non-visual 
responses. Modeling can be a useful tool not only to 
gain deeper understanding of complex systems but 
also to point out gaps of knowledge, suggest specifics 
experiments and serve as a tendentious module for 
studying practical implications of simulated human-
responses. One challenging aspect is the fact that the 
non-visual system adapts its responses to changes in 
light intensity and spectral composition over a much 
longer timeframe than the visual system (Gooley et 
al., 2010; Chang et al., 2012). 
Very few studies can be found that use this new 
knowledge to investigate which design factors can 
increase the non-visual potential of architectural 
spaces. The authors were the first to propose 
modelling frameworks that would address this 
question (Pechacek et al., 2008; Gochenour & 
Andersen, 2009; Andersen et al., 2012) but all of 
them were static in the sense that the slower 
adaptation of the non-visual system was not taken 
into account, nor were spectral sensitivity shifts and 
desensitization effects after prolonged exposure 
included. The objective here is to incorporate a 
mathematical model that the authors are currently 
developing to predict direct non-visual responses to 
light stimuli including time- and spectral-dependent 
shifts in sensitivity (Amundadottir et al., 2013a), in a 
way it can inform daylighting design through a goal-
based simulation workflow such as proposed by 
Lightsolve.  

Foundations for perceptual effects 
The perception of daylight within architectural space 
is an important aspect of visual performance and 
impacts the ways in which that space is experienced. 
Contrast draws our attention toward spatial 

complexity and highlights areas of material 
transition, while the dynamic nature of sunlight 
generates varied luminous effects over time. The 
visual effects of daylight are subjectively perceived 
and evaluated by each occupant, making it very 
difficult to enforce them as design factors even 
though they ultimately drive many design decisions. 
The perceived qualitative aspects of daylight in a 
varying indoor space are underserved by the metrics 
currently available to designers: architecture must 
‘perform’ in both qualitative and quantitative criteria, 
so we must work to re-establish the role of emotional 
and perceptual indicators in our language about 
performance. 
While some metrics have emerged to try and quantify 
‘light quality’ through identifying a relationship 
between brightness, contrast and occupant preference 
(Cetegen et al., 2008; Wymelenberg & Inanaci, 2009; 
Parpairi et al., 2002), they are generally based on 
occupant surveys of existing scenes or static digital 
images of an interior space taken at key incremental 
moments.  Although occupant surveys were once the 
primary method of data collection, digital 
photographs have become a useful alternative for 
practical purposes (Cetegen et al., 2008). Since the 
advent of HDR imaging, we are now able to produce 
digital photographs and renderings with a broader 
range of luminance data that more accurately capture 
a scene from an occupant’s point-of-view (Newsham 
et al., 2005).  Two dimensions that are widely 
accepted to impact the field-of-view are average 
luminance and luminance diversity (Cetegen et al., 
2008).  The former has been directly associated with 
perceived lightness and the latter with visual interest. 
Those metrics that take advantage of HDR digital 
images aim to correlate factors such as view size, 
average luminance, or luminance diversity with an 
occupant’s perception of pleasantness, excitement, 
and spaciousness of the view as established by 
surveys (Cetegen et al., 2008; Newsham et al., 2005). 
The studies that focus on average luminance are 
generally associated with perceived lightness, while 
luminance diversity (typically min/max ratios) is 
often associated with visual interest. Other studies 
have used genetic algorithms to predict occupant 
preferences toward average luminance and 
uniformity within a specific program environment, 
such as an office environment (Newsham et al., 
2005).  Although these findings are somewhat 
consistent in  pointing out that occupants seem to 
prefer bright, non-uniformly lit environments with 
some luminance diversity (Parpairi et al., 2002; 
Wymelenberg & Inanici, 2009), none of these studies 
address the question of dynamic variability of 
daylight as it is impacted by seasonal and daily 
variations in strength, climate, and solar orientation.  
Outside of the Luminance Difference Index (Parpairi 
et al., 2002), there is also a lack of metrics that can 
distinguish between compositional variations in 
contrast across our-field-of-view, unlike the human 



brain which is capable of discerning such effects by 
mere observation. The dynamic nature of sunlight 
creates a visceral connection between the occupant 
and his/her surrounding environment and spatial 
contrast and variability are fundamental to the 
experiential impacts of architecture; yet architects 
still have to rely on intuition and experience to 
evaluate their dynamic effects against their intended 
programmatic use. What we propose is a set of 
metrics that would integrate the dynamic aspects of 
perceived daylight as tangible guiding factors for 
design. Such a method could help designers in 
contextualizing relative strength as well as temporal 
stability of contrast within an architectural space.  

METHODOLOGY 
What we propose in this paper is a preliminary 
workflow to integrate non-visual and perceptual 
aspects of daylighting performance into an 
interactive tool specifically developed for early stage, 
full year, climate-based daylighting design support.  

Revised structure of the Lightsolve platform 
The application of these concepts into a simulation 
framework required a new embodiment for 
Lightsolve to be developed. Its overall principle (cf. 
Andersen et al., 2008) – and the general layout of the 
user interface (new prototype shown in Figure 1), 
with goal-based temporal maps displayed alongside 
interactive renderings (Andersen et al., submitted), 
were maintained. Such temporal maps – with days of 
the year on the x-axis and time of day on the y-axis – 
exhibit how closely user-defined goals are fulfilled 
over the year using a triangular color scale (Fig. 3b, 
cf. Kleindienst & Andersen, 2012).  
The fundamental changes compared to the original 
embodiment of Lightsolve relate to the new ray-
tracing engines used and a completely new software 
and display structure. The main goal was to make the 
tool much more responsive and reliable. 

 
Figure 1 New Prototype for Lightsolve User interface  
Thus, a specific selection of tools and libraries was 
selected for this new structure to rely upon: 
- C++ as programming language using GCC (GNU 
Compiler Collection) for Mac OSX or MinGW 
(Minimalist GNU) for Windows systems 

- Radiance as the best-validated daylighting 
simulation engine 
- Nvidia Optix Application Acceleration Engine as a 
real-time ray-tracing tool for ensuring high 
responsiveness and interactivity in the 3D rendering 
(Nasman et al., 2011) 
The functionalities of the application are based on 
modules and are designed to allow both local and 
remote development. These independent modules are 
detached from the core application to allow high 
flexibility in the development and later integration of 
new modules in the future. Two types of modular 
units can be distinguished: LightSolve Modules 
which are processing units with illuminance values as 
input, and LightSolve Services which are processing 
units with more complex inputs (Expert System, 
etc.). Only the latter can access and change whole 
scenes (mesh, position and point of view), start 
lighting simulation computing or reprocess modules. 
The Raytracing Engine and the Lighting Simulation 
Engine are also independent and detached from the 
core to allow future component replacements. Unlike 
LightSolve Services or Modules, the Raytracing and 
Lighting Simulation Engines are unique objects with 
precise goals and specific interfaces (see Fig. 2). 

 
Figure 2 Lightsolve structure 

General Lightsolve workflow  
The Lightsolve interface and visualization framework 
offers a very powerful support to reveal multi-faceted 
performance thanks to its time-based focus combined 
with a simultaneous visualization of renderings.  
In this new embodiment for Lightsolve, two analysis 
outcomes are  proposed, illustrated in Fig 3 for the 
same West-facing room as in Fig. 1, located at 41 
degrees North (latitude): 
- the straightforward visualization of performance 
using an absolute scale, which displays the 
respective metric’s average value over the area of 
interest (illuminance over workplane like in Fig 3a, 
or average DGP, etc., or unconventional performance 
such as derived from non-visual or perceptual effects 
expressed by the metrics described below) 
- the less straightforward visualization of perfor-
mance using a goal-based scale like in Fig 3b, which 
represents how closely prescribed goals are met. 
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For both the absolute and goal-based scales, two 
representations appear side-by-side on the Lightsolve 
interface to fully reveal annual, seasonal and daily 
performance over both time and space: a time-varied 
representation in the form of a temporal map (left) 
over which a cursor (cross in Fig 3 left) can be 
moved to select a given moment over the year; and a 
rendering (right) associated to that specific moment, 
where the spatial distribution of the respective 
metric’s values (here, illuminance) can be visualized 
in false-color on the user-defined sensors (areas of 
interest). Weather conditions are accounted for 
thanks to the climate-based time segmentation 
method described in Kleindienst et al. (2008) and 
renderings can be associated to either the dominant 
sky type for that period (clear, clear-turbid, 
intermediate or overcast, cf. Kleindienst et al. 2008) 
or to one chosen by the user (clear sky in Fig. 3 e.g.) 
Fig. 3a is quite easy to interpret:  considering a 
sensor plane covering almost the entire space at 
workplane height (Fig. 3a, right) and given the West-
orientation of the space, average illuminance over the 
sensor area (left) will be higher in the afternoon all 
year long but even more so in the winter (unless the 
local climate has particularly cloudy winters). As far 
as spatial illuminance distribution is concerned for 
the selected moment under clear sky, illuminance 
will of course be highest on the sun spots (> 2500 lx) 
and closest to the window, and lowest in the back 
corners (< 500 lux).  Both temporal (climate-based 
maps) and spatial data (false-colors on renderings) 
are based on the same color scale, provided on the 
left.  
To complement this information and interpret 
simulation outcomes in terms of how closely 
prescribed goals are met, an additional step is 
necessary, that translates absolute, time-based 
performance into a goal-based scale (Fig. 3b) using 
the triangular color scale introduced in Kleindienst & 
Andersen (2012). In this example, the targeted 
desired illuminance levels on the measurement area 
were between 800 and 1200lx and the extreme 
acceptable values were 500 and 2000lx. The obtained 
goal-based representation over a full year indicates 
that the objective is generally reached (dominating 
yellow), except during afternoons during the summer 
period, where objectives are not met because of 
simultaneously too high and too low illuminance 
values (depicted in purple). 
Again, the instantaneous 3D rendering corresponding 
to the time selected on the time-based representation 
allows refining the analysis of the results. In this 
example, the purple spots are clearly explained by the 
false-color rendering (Fig. 3b, right), with locations 
too dark (in blue) and others too bright (in red). More 
specifically, the sensor areas which receive direct sun 
rays are above the goal (red when higher than 2000lx 
and in a variable orange when between 1200 and 
2000lx). Parts which are nearer the left wall are 

either in blue (illuminances lower than 500lx) or 
variable green (illuminances between 500 and 800lx).  
The resulting “double combination” of absolute vs. 
goal-based and time-based vs. spatial visualization 
makes the performance analysis particularly 
interactive and – as previous studies have shown for 
the goal-based scale (Andersen et al., submitted) – 
intuitive to the user. 

 
Figure 3 Time-based illuminance analysis (left) with 
associated rendering at given moment (right and 
cursor) on an absolute (a) and goal-based scale (b) 

Incorporating non-visual aspects 
At this point in time, there does not appear to be 
sufficient information on non-visual responses to 
light to produce a detailed mathematical model that 
would work in real-world settings. Despite 
knowledge gaps in photobiology literature, 
experimental findings still offer the means to advance 
and validate novel design support tools to assess how 
architectural spaces might affect human health and 
wellbeing. Here, we propose a dynamic model of the 
non-visual light-response relationship that combines 
two temporal integration modules and a nonlinear 
response function, and whose outcomes can be 
effectively formatted within the context provided by 
Lightsolve, i.e. as goal-based, time-driven 
performance maps. Its foundations are summarized 
below and are further described in (Amundadottir et 
al., 2013a). 
To extract mathematical relationships from observed 
non-visual effects in the photobiology literature, we 
will focus on the five essential characteristics of light 
exposure summarized in Fig. 4a. There is a nonlinear 
relationship between the intensity of light and its 
effects on the non-visual system (Cajochen et al., 
2000; Zeitzer et al., 2000). The nonlinearity is 
saturating that is as light intensity increases, 
eventually a point is reached where adding more light 
does not increase the response. In addition to this, the 
ipRGCs, which appear to be the primary mediators of 
non-visual responses to light, allow the integration of 
light exposure over long periods of illumination 
compared to rods and cones but the mechanism 
underlying the sluggish response is unknown (Berson 
et al., 2002). Experimental findings have 
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demonstrated a nonlinear duration–response 
relationship to light exposure (Chang et al., 2012), 
while light exposure does not need to be continuous 
to affect the system (Gronfier et al., 2004). 
To include the identified nonlinear intensity- and 
duration-response relationship, we propose a block-
structured model for simulating the direct non-visual 
responses to light. Such models can be represented 
by interconnections of linear filters and nonlinear 
terms, as illustrated in Fig. 4b. The light stimulus l(t) 
– time samples of light exposure derived from 
lighting calculations e.g. – is passed through a linear 
filter L1(t) that averages the light exposure pattern 
over current and past time samples, giving the output 
u(t). Then u(t) is transformed by a nonlinear function 
N(u) describing the intensity-response to the light 
stimulus. To account for timing of light exposure and 
prior photic history, this term must be converted into 
a dynamic function as demonstrated in Fig. 4c-d: 
during daytime or after long-term exposure in bright 
lighting conditions, the dynamic range of the system 
increases (Fig. 4c) but during nighttime or after 
spending long time in darkness, the dynamic range of 
the system decreases (Fig. 4d). The output v(t) is 
finally passed through a second filter L2(t) to 
integrate duration-response. The two linear filters 
thus reflect the temporal processing between the light 
stimulus and the output response. The inputs to the 
model are discrete time samples of light intensity and 
spectrum, obtained from lighting simulation or 
empirical spectral measurements. The model outputs 
are time-sampled relative non-visual responses, that 
we will use as proxy for healthy non-visual light-
exposure in the same way we previously used 
subjective alertness (Pechacek et al., 2008; 
Gochenour & Andersen, 2009; Andersen et al., 
2012). The model outputs will be used to evaluate 
direct non-visual responses to light with, we hope, 
significantly higher accuracy than existing static 
models. Ultimately, we envision that the model can 
also be incorporated into comprehensive circadian 
process models (Jewett & Kronauer, 1999). 
The proposed model has the potential to capture the 
non-visual effects of time-varying light exposure, but 
it has not yet been validated for 2-3 log illuminance 
units due to lack of experimental data. However, the 
model is not limited to one type of intensity-response 
function, which allows for more flexibility as 
knowledge accumulates. Moreover, additional effects 
need to be accounted for, which requires more 
sophisticated models. First, it has been shown that 
under dim light conditions and at the start of light 
exposure, cones (green-light sensitive) contribute at 
least equally to non-visual responses whereas at 
higher intensities, ipRGCs (blue-light sensitive) 
predominate (Gooley et al., 2010). Second, timing of 
light exposure and prior photic history seems to 
strongly influence the dynamic intensity-response 
range (the range of light intensities to which the non-
visual system responds to before reaching the 

saturation point). Incorporating these additional 
effects into a single model is further discussed in 
Amundadottir et al. (2013a).  

 
Figure 4 (a) The 5 characteristics of light exposure. 
(b) Diagram of the light-response model structure 
and its linkage. This type of functional model is 
referred to as linear-nonlinear-linear (LNL) model. 
(c-d) Time-varying intensity-response functions for 
the non-visual system during nighttime (c) and 
daytime (d). 

Linking the model to a lighting simulation process is 
important, because the ultimate goal is to develop a 
new type of lighting design support. A parallel 
publication (Amundadottir et al., 2013b) focuses 
specifically how this type of support can be applied 
in an actual design exercise. In the interest of 
providing the designer with an informative visual 
representation, an additional user-defined input is 
required that would be specific to the desired design 
performance. By evaluating the response output 
against such user-defined goals, a format can be 
provided to the designer illustrating whether a given 
goal is met or not. 
As an example of a preliminary format where goal-
fulfilment in this human-centered context could be 
visualized, a simple room was modelled with a 
window facing West (space shown in Figs 1 and 3). 
Daylight exposure (vertical illuminance) for someone 
who would stand in the middle of the room and stare 
at the window all year long is provided in Fig. 5a, 
based on Radiance calculations and on Daysim’s 
daylight coefficient method. Fig. 5b shows the 
estimated non-visual response once our model is 
applied and where one can clearly observe the effect 
of our non-visual system’s sluggishness (response 
delayed compared to exposure). 



   
Figure 5 Illuminance (a) vs. relative n-v response as 
predicted by our proposed light-response model (b) 
To adopt a goal-based perspective, since the non-
visual system adapts to changes in light intensity and 
spectral composition over a much longer time period 
than the visual system, we cannot apply instantaneous 
performance criteria. If a non-visual response is 
categorized as “bad” after evaluating Fig. 5b’s results 
against prescribed goals, it is far from trivial to trace 
the response back to a specific period of time over the 
day when light exposure was too low or too high (Fig. 
5a). The main difficulty in tracing back the cause is 
that there exists not only one but infinite number of 
light patterns that may induce the same non-visual 
effects. In order to achieve this, we would need a 
search algorithm that will look for a set of light 
patterns that best fit the performance criteria, the 
development of which is beyond the scope of the 
present paper. Conceptually, such an approach would 
lead to outcomes that may look like the one displayed 
in Fig. 6a. The figure shows periods of time when 
light exposure should be avoided where it could have 
negative influences on circadian rhythms (red-orange) 
and when more light could have beneficial effects in 
terms of alertness and productivity (blue-green). The 
horizontal lines in Figs 5 and 6a mark three time 
periods. A goal-based performance criterion is 
assigned to each period to account for timing of light 
exposure relating to the circadian clock. 

     
Figure 6 Conceptual maps for goal-based perfor-
mance representation of a) n-v effects and b) contrast 

Incorporating perceptual aspects 
To celebrate the role of daylight as a fundamental 
element of dynamic visual interest, we need a new 
perspective about subjective preferences and design 
intent regarding contrast and variability. Towards this 
end, we propose to establish a methodology for 
comparing annual contrast and luminance variability 
in daylit architecture. Its implementation as a 
Lightsolve metric is discussed below, building upon 
initial results (Rockcastle & Andersen, 2012), and its 
conceptual interpretation from a goal-based 
perspective is introduced (work in progress). 

Contrast and luminance variability of daylight are 
essential to the visual performance of architecture, yet 
architects have no means of comparing design options 
from a perceptual perspective, nor do they have 
support in manipulating parameters to achieve a 
desired intent. These limitations establish the need for 
a new class of metrics that can reveal the complexity 
and instability of daylit architecture. Based on the 
medium of photographs and rendered scenes, which 
architects use readily within the practice of design, we 
previously introduced a dual approach for perceptual 
daylight analysis in the form of complementary 
perceptual metrics (Rockcastle & Andersen, 2012).  

To establish these metrics, we generated a linear 
taxonomy derived from global contemporary 
architecture examples, based on our intuitive 
perception of contrast and temporal variability within 
each selected space.  Our prediction for luminance 
variability was determined through the composition of 
external fenestration within each space and the 
resulting sunlight patterns that we could expect to 
shift throughout the space, creating a dynamic 
composition of light and shadow.  The more extreme 
cases of spatial contrast and luminance variability 
were located to the left side of the gradient, while the 
more uniform and stable examples where located to 
the right side of the gradient (Fig. 7a). From this 
analysis, we established that the composition of 
contrast within the image, and not the average 
luminance or standard deviation across the image, was 
what generated the impression of spatial contrast.   
To test this method, we distilled each of the categories 
from the full linear taxonomy of existing spaces (Fig. 
7a) down into a single representative digital model (10 
in total, Fig. 7b) that expressed the associated gradient 
of contrast or variability on a more explicit level, with 
a luminous character similar to the existing examples’ 
but with an abstracted level of detail. These simplified 
digital models were then used to produce a time-lapse 
series of renderings. To limit the number of produced 
images, the time segmentation method developed for 
Lightsolve was used as a reduced climate-based 
framework (Kleindienst et al., 2008), resulting in a 
time-series of 56 key moments from across the year.   

We developed a quantitative method for measuring 
the compositional boundaries between light and dark 
pixels and used this as a basis for generating Spatial 
Contrast and Luminance Variability metrics, first as 
static instances then extended to cumulative (annual) 
representations (Rockcastle & Andersen, 2012).   
Spatial Contrast estimates the spatial distribution of 
contrast across a selected view at a given moment; its 
annual dynamic variability can be represented using 
an absolute-scale temporal map in Lightsolve (Fig. 
8a, left), which shows when that contrast will change 
throughout the day and year as a result of sunlight 
dynamics (all afternoons and mornings in the winter 
in this example). To complement this time-based 
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Figure 7 Taxonomy of contrast / variability gradients in a) architectural spaces and b) typological matrix
information, instantaneous false-color renderings of 
spatial contrast can be produced for every moment 
and displayed simultaneously in the Lightsolve 
interface to show where (i.e. in which portions of the 
view) most spatial contrast will be experienced. But 
we can also display cumulative annual contrast 
renderings (Fig. 8a, right) to evaluate spatial contrast 
when considering the entire year (highest on floor).   
Luminance variability throughout a selected view 
calculates the absolute difference in pixel values 
between daily and seasonal instances. Similarly to 
contrast, we can generate instanteaneous (from one 
time-step to the next) but also accumulative (annual) 
luminance variability (Fig. 8b, right) to highlight 
which areas experience the most frequent change 
over the year (here also floor and to some extent 
wall).  The associated temporal map (Fig. 8b, left), 
shows when the most variability occurs through the 
day and year (afternoons, and throughout the day in 
the winter months).  

 

 
Figure 8 Perceptual contrast (a) and variability (b) 

over time (left) vs. space (right) 

For perceptual daylight performance, the ‘non-
absoluteness’ of performance takes its full meaning 
more than ever: there is no objectively “good” or 
“bad” performance (except in terms of norms or 
comfort requirements), what counts is the designer’s 
intent. In the design support framework that 
Lightsolve offers, reference spaces, such as those 
shown in Fig. 7a, could thus serve as a “delight 
target” database (i.e. a set of freely-interpreted effects 

ranging from low to high contrast and/or variability) 
while their associated simplified models can serve as 
a support from which our metrics, used as indicators 
of performance, could be calculated and graphed. 
The theoretical example shown in Fig. 6b shows how 
we might represent the degree of annual spatial 
contrast in terms of goal-based targets established by 
the designer.  Using the same west-facing space as an 
example – corresponding to typology 5 in Fig. 7b –, 
if the designer had in mind to achieve high contrast 
to stimulate visual interest but keep it within a certain 
threshold (closer to what a typology 4 would 
generate e.g.), Lightsolve would generate a goal-
based temporal map conceptually similar to Fig. 6b: 
it would exhibit “too high” spatial contrast 
(compared to target goals) in the winter (especially 
afternoons) – leading to red or orange – and 
acceptable spatial contrast in the mornings and most 
of the summer days – leading to yellow.  As an 
evolution from Fig. 8a, designers would then be able 
to initiate changes within their design model and test 
to see whether those changes meet their design goals. 
As illustrated by this conceptual analysis, 
performance can be understood, even for somewhat 
subjective, intent-driven metrics expressing contrast 
or variability, by how closely a desired effect will be 
matched, i.e. how similar the metrics’ values are 
between the desired effect (target, here associated 
with an image) and the considered one. Such an 
approach, which is currently under development, will 
ultimately allow objective comparisons between 
spaces while keeping the perceptual aspects of light 
intact: the designer will still be able to freely interpret 
light quality with his/her own sensitivity.  

CONCLUSION 
This paper presents the latest developments of a full-
year, comprehensive daylighting support tool named 
Lightsolve, with a focus on its potential to show a 
combination of time-varied, spatial, absolute and 
goal-based performance interactively and highly 
visually. The results show the potential of such 
visualization formats to express annual daylighting 
performance even for highly unconventional metrics 
such as derived from non-visual effects or perceptual 
daylight, whose time-dependency represents the most 
essential aspect of performance. Goal-based color 
scales are particularly powerful in proposing a 
unified framework to describe performance in terms 
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of how closely prescribed goals are met, and thus 
assessing how “successful” a design option is 
(especially in relative terms) from many perspectives.  
Beyond their complementarity in supporting a 
unified daylighting performance framework, the two 
proposed models regarding non-visual effects and 
perceptual daylight embed highly innovative aspects 
by themselves. The light-response model represents a 
first attempt to functionally describe the underlying 
mechanism of direct nonvisual effects, which holds 
promise as new approach to support healthy lighting 
design once further research will have been 
conducted to refine and validate the proposed model 
(Amundadottir et al., 2013a,b). On the other hand, 
the proposed metrics for perceptual daylight are 
unique in enabling designers to contextualize the 
relative strength as well as the temporal stability of 
contrast within a given architectural space. 
REFERENCES 
Amundadottir M, St Hilaire M, Lockley SW, Andersen M. 

2013a. Modeling non-visual responses to light: 
unifying spectral sensitivity and temporal characteris-
tics in a single model structure. CIE Conf, Paris 

Amundadottir M, Lockley SW, Andersen M. 2013b. 
Simulation-based evaluation of non-visual responses 
to light: proof-of-concept study of healthcare re-
design, BS 2013, Chambéry 

Andersen M, et al. 2008. An intuitive daylighting 
performance analysis and optimization approach, 
Building Research & Information 36(6): 593–607 

Andersen M, Gagne JML, Kleindienst S. (submitted). 
Interactive expert support for early stage full-year 
daylighting design: a user’s perspective on Lightsolve, 
Automation in Construction 

Andersen M, Mardaljevic J, and Lockley, S. W. 2012. A 
framework for predicting the non-visual effects of 
daylight - Part I: photobiology-based model. Lighting 
Research & Technology 44(1):37–53 

Berson DM, Dunn FA, Takao M. 2002. Photo-transduction 
by Retinal Ganglion Cells That Set the Circadian 
Clock. Science 295:1070– 1073 

Cajochen C et al. 2000. Dose-response relationship for 
light intensity and ocular and electroencephalographic 
correlates of human alertness. Behavioral Brain 
Research 115(1):75–83 

Chang A-MM, et al. 2012. Human responses to bright light 
of different durations. The Journal of physiology, 
590(13):3103–3112 

Cetegen D, Veitch, JA, Newsham, GR, 2008. View Size 
and Office Illuminance Effects on Employee 
Satisfaction. Proc. Balkan Light, Ljubljana  

Gagne JML, Andersen M, Norford LK. 2011. An 
Interactive Expert System for Daylighting Design 
Exploration, Build & Env 46(11) 

Gochenour, S. J. and Andersen, M. 2009. Circadian Effects 
of Daylighting in a Residential Environment. In Proc 
LuxEuropa 2009, Istambul 

Gooley JJ et al. 2010. Spectral Responses of the Human 
Circadian System Depend on the Irradiance and 
Duration of Exposure to Light. Science Translational 
Medicine, 2(31ra33) 

Gronfier C et al. 2004. Efficacy of a single sequence of 
intermittent bright light pulses for de- laying circadian 
phase in humans. Amer. J. Physiology – Endocrin. & 
Metabolism, 287(1):E174–E181 

IEA. 2008. Testing and Validation of Building Energy 
Simulation Tools, International Energy Agency 
Technical Report SHC Task 34 

Jewett ME, Kronauerm RE. 1999. Interactive mathematical 
models of subjective alertness and cognitive 
throughput in humans. Journal of biological rhythms, 
14(6):588–597 

Kleindienst S, Bodart M, Andersen M. 2008. Graphical 
Representation of Climate-Based Daylight Perfor-
mance to support architectural design, Leukos 5(1) 

Kleindienst S., Andersen M. 2012. Comprehensive Annual 
Daylight Design through a Goal-Based Approach, 
Build. Res. & Info. 40(2): 154-173 

Lockley SW. 2009. Circadian Rhythms: Influence of Light 
in Humans, 971–988. Acad. Press, Oxford 

Mardaljevic J, Heschong L, Lee E. 2009. Daylight metrics 
and energy savings, Lighting Research and 
Technology 41(3): 261-283 

Münch M et al. 2012. Effects of prior light exposure on 
early evening performance, subjective sleepiness, and 
hormonal secretion. Behavioral neuroscience, 
126(1):196–203 

Nasman JD, Cutler B. 2011. Evaluation of a tangible 
interface for architectural daylighting analysis, 
i3D:207-ACM SIGGRAPH  

Newsham GR, Richardson C, Blanchet C, Veitch JA., 
2005. Lighting Quality Research Using Rendered 
Images of Offices. Light Res Techn 37 (2): 93-115 

Ochoa C., Capeluto I. 2009. Advice tool for early design 
stages of intelligent façades based on energy and 
visual comfort approach, Energy & Buildings 41(5) 

Parpairi K et al. 2002. The Luminance Differences index: a 
new indicator of user preferences in daylit spaces, 
Lighting Research & Technology 34  

Paule B., Flourentzou F., Pantet S., Boutillier J. 2011. 
DIAL+suite […], Proc. of CISBAT, Lausanne 

Pechacek CS, Andersen M, Lockley SW. 2008. Preli-
minary Method for Prospective Analysis of the Circa-
dian Efficacy of (Day)Light[...] Leukos 5(1)  

Rockcastle S, Andersen M. 2012. Dynamic Annual Metrics 
for Contrast in Daylit Architecture, In Proc. SimAUD 
2012, Orlando 

Viola AU et al. 2008. Blue-enriched white light in the 
work- place improves self-reported alertness, 
performance and sleep quality. Scandinavian J. of 
work, environment & health, 34(4):297–306 

Webb A. 2006. Considerations for lighting in the built 
environment: Non-visual effects of light. Energy and 
Buildings, 38(7):721–727 

Wienold J. 2009. Dynamic daylight glare evaluation, In 
Proc. of IBPSA 2009 Conference, Glasgow, UK 

Wymelenberg K, Inanici M. 2009. A Study of Luminance 
Distribution Patterns and Occupant Preference in 
Daylit Offices, PLEA 2009, Quebec City 

Zeitzer JM, Dijk D-J, Kronauer RE, Brown EN, Czeisler 
CA. 2000. Sensitivity of the human circadian 
pacemaker to nocturnal light: melatonin phase 
resetting and suppression. J Physiol 526(3) 


