58,778 research outputs found

    Security requirement management for cloud-assisted and internet of things⇔enabled smart city

    Full text link
    The world is rapidly changing with the advance of information technology. The expansion of the Internet of Things (IoT) is a huge step in the development of the smart city. The IoT consists of connected devices that transfer information. The IoT architecture permits on-demand services to a public pool of resources. Cloud computing plays a vital role in developing IoT-enabled smart applications. The integration of cloud computing enhances the offering of distributed resources in the smart city. Improper management of security requirements of cloud-assisted IoT systems can bring about risks to availability, security, performance, confidentiality, and privacy. The key reason for cloud- and IoT-enabled smart city application failure is improper security practices at the early stages of development. This article proposes a framework to collect security requirements during the initial development phase of cloud-assisted IoT-enabled smart city applications. Its three-layered architecture includes privacy preserved stakeholder analysis (PPSA), security requirement modeling and validation (SRMV), and secure cloud-assistance (SCA). A case study highlights the applicability and effectiveness of the proposed framework. A hybrid survey enables the identification and evaluation of significant challenges

    SFTSDH: Applying Spring Security Framework with TSD-Based OAuth2 to Protect Microservice Architecture APIs

    Get PDF
    The Internet of Medical Things (IoMT) combines medical devices and applications that use network technologies to connect healthcare information systems (HIS). IoMT is reforming the medical industry by adopting information and communication technologies (ICTs). Identity verification, secure collection, and exchange of medical data are essential in health applications. In this study, we implemented a hybrid security solution to secure the collection and management of personal health data using Spring Framework (SF), Services for Sensitive Data (TSD) as a service platform, and Hyper-Text-Transfer-Protocol (HTTP (H)) security methods. The adopted solution (SFTSDH = SF + TSD + H) instigated the following security features: identity brokering, OAuth2, multifactor authentication, and access control to protect the Microservices Architecture Application Programming Interfaces (APIs), following the General Data Protection Regulation (GDPR). Moreover, we extended the adopted security solution to develop a digital infrastructure to facilitate the research and innovation work in the electronic health (eHealth) section, focusing on solution validation with theoretical evaluation and experimental testing. We used a web engineering security methodology to achieve and explain the adopted security solution. As a case study, we designed and implemented electronic coaching (eCoaching) prototype system and deployed the same in the developed infrastructure to securely record and share personal health data. Furthermore, we compared the test results with related studies qualitatively for the efficient evaluation of the implemented security solution. The SFTSDH implementation and configuration in the prototype system have effectively secured the eCoach APIs from an attack in all the considered scenarios. The eCoach prototype with the SFTSDH solution effectively sustained a load of (≈) 1000 concurrent users in the developed digital health infrastructure. In addition, we performed a qualitative comparison among the following security solutions: SF security, third-party security, and SFTSDH, where SFTSDH showed a promising outcome.publishedVersio

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    A Hybrid Approach for Data Analytics for Internet of Things

    Full text link
    The vision of the Internet of Things is to allow currently unconnected physical objects to be connected to the internet. There will be an extremely large number of internet connected devices that will be much more than the number of human being in the world all producing data. These data will be collected and delivered to the cloud for processing, especially with a view of finding meaningful information to then take action. However, ideally the data needs to be analysed locally to increase privacy, give quick responses to people and to reduce use of network and storage resources. To tackle these problems, distributed data analytics can be proposed to collect and analyse the data either in the edge or fog devices. In this paper, we explore a hybrid approach which means that both innetwork level and cloud level processing should work together to build effective IoT data analytics in order to overcome their respective weaknesses and use their specific strengths. Specifically, we collected raw data locally and extracted features by applying data fusion techniques on the data on resource constrained devices to reduce the data and then send the extracted features to the cloud for processing. We evaluated the accuracy and data consumption over network and thus show that it is feasible to increase privacy and maintain accuracy while reducing data communication demands.Comment: Accepted to be published in the Proceedings of the 7th ACM International Conference on the Internet of Things (IoT 2017
    • …
    corecore