40 research outputs found

    Correlation-based Intrinsic Evaluation of Word Vector Representations

    Full text link
    We introduce QVEC-CCA--an intrinsic evaluation metric for word vector representations based on correlations of learned vectors with features extracted from linguistic resources. We show that QVEC-CCA scores are an effective proxy for a range of extrinsic semantic and syntactic tasks. We also show that the proposed evaluation obtains higher and more consistent correlations with downstream tasks, compared to existing approaches to intrinsic evaluation of word vectors that are based on word similarity.Comment: RepEval 2016, 5 page

    Multi-lingual Common Semantic Space Construction via Cluster-consistent Word Embedding

    Full text link
    We construct a multilingual common semantic space based on distributional semantics, where words from multiple languages are projected into a shared space to enable knowledge and resource transfer across languages. Beyond word alignment, we introduce multiple cluster-level alignments and enforce the word clusters to be consistently distributed across multiple languages. We exploit three signals for clustering: (1) neighbor words in the monolingual word embedding space; (2) character-level information; and (3) linguistic properties (e.g., apposition, locative suffix) derived from linguistic structure knowledge bases available for thousands of languages. We introduce a new cluster-consistent correlational neural network to construct the common semantic space by aligning words as well as clusters. Intrinsic evaluation on monolingual and multilingual QVEC tasks shows our approach achieves significantly higher correlation with linguistic features than state-of-the-art multi-lingual embedding learning methods do. Using low-resource language name tagging as a case study for extrinsic evaluation, our approach achieves up to 24.5\% absolute F-score gain over the state of the art.Comment: 10 page

    Morphological Priors for Probabilistic Neural Word Embeddings

    Full text link
    Word embeddings allow natural language processing systems to share statistical information across related words. These embeddings are typically based on distributional statistics, making it difficult for them to generalize to rare or unseen words. We propose to improve word embeddings by incorporating morphological information, capturing shared sub-word features. Unlike previous work that constructs word embeddings directly from morphemes, we combine morphological and distributional information in a unified probabilistic framework, in which the word embedding is a latent variable. The morphological information provides a prior distribution on the latent word embeddings, which in turn condition a likelihood function over an observed corpus. This approach yields improvements on intrinsic word similarity evaluations, and also in the downstream task of part-of-speech tagging.Comment: Appeared at the Conference on Empirical Methods in Natural Language Processing (EMNLP 2016, Austin

    Redefining part-of-speech classes with distributional semantic models

    Full text link
    This paper studies how word embeddings trained on the British National Corpus interact with part of speech boundaries. Our work targets the Universal PoS tag set, which is currently actively being used for annotation of a range of languages. We experiment with training classifiers for predicting PoS tags for words based on their embeddings. The results show that the information about PoS affiliation contained in the distributional vectors allows us to discover groups of words with distributional patterns that differ from other words of the same part of speech. This data often reveals hidden inconsistencies of the annotation process or guidelines. At the same time, it supports the notion of `soft' or `graded' part of speech affiliations. Finally, we show that information about PoS is distributed among dozens of vector components, not limited to only one or two features

    Firearms and Tigers are Dangerous, Kitchen Knives and Zebras are Not: Testing whether Word Embeddings Can Tell

    Full text link
    This paper presents an approach for investigating the nature of semantic information captured by word embeddings. We propose a method that extends an existing human-elicited semantic property dataset with gold negative examples using crowd judgments. Our experimental approach tests the ability of supervised classifiers to identify semantic features in word embedding vectors and com- pares this to a feature-identification method based on full vector cosine similarity. The idea behind this method is that properties identified by classifiers, but not through full vector comparison are captured by embeddings. Properties that cannot be identified by either method are not. Our results provide an initial indication that semantic properties relevant for the way entities interact (e.g. dangerous) are captured, while perceptual information (e.g. colors) is not represented. We conclude that, though preliminary, these results show that our method is suitable for identifying which properties are captured by embeddings.Comment: Accepted to the EMNLP workshop "Analyzing and interpreting neural networks for NLP
    corecore