3,989 research outputs found

    An investigation of a deep learning based malware detection system

    Full text link
    We investigate a Deep Learning based system for malware detection. In the investigation, we experiment with different combination of Deep Learning architectures including Auto-Encoders, and Deep Neural Networks with varying layers over Malicia malware dataset on which earlier studies have obtained an accuracy of (98%) with an acceptable False Positive Rates (1.07%). But these results were done using extensive man-made custom domain features and investing corresponding feature engineering and design efforts. In our proposed approach, besides improving the previous best results (99.21% accuracy and a False Positive Rate of 0.19%) indicates that Deep Learning based systems could deliver an effective defense against malware. Since it is good in automatically extracting higher conceptual features from the data, Deep Learning based systems could provide an effective, general and scalable mechanism for detection of existing and unknown malware.Comment: 13 Pages, 4 figure

    Comparison of Deep Learning and the Classical Machine Learning Algorithm for the Malware Detection

    Full text link
    Recently, Deep Learning has been showing promising results in various Artificial Intelligence applications like image recognition, natural language processing, language modeling, neural machine translation, etc. Although, in general, it is computationally more expensive as compared to classical machine learning techniques, their results are found to be more effective in some cases. Therefore, in this paper, we investigated and compared one of the Deep Learning Architecture called Deep Neural Network (DNN) with the classical Random Forest (RF) machine learning algorithm for the malware classification. We studied the performance of the classical RF and DNN with 2, 4 & 7 layers architectures with the four different feature sets, and found that irrespective of the features inputs, the classical RF accuracy outperforms the DNN.Comment: 11 Pages, 1 figur

    Survey of Machine Learning Techniques for Malware Analysis

    Get PDF
    Coping with malware is getting more and more challenging, given their relentless growth in complexity and volume. One of the most common approaches in literature is using machine learning techniques, to automatically learn models and patterns behind such complexity, and to develop technologies for keeping pace with the speed of development of novel malware. This survey aims at providing an overview on the way machine learning has been used so far in the context of malware analysis. We systematize surveyed papers according to their objectives (i.e., the expected output, what the analysis aims to), what information about malware they specifically use (i.e., the features), and what machine learning techniques they employ (i.e., what algorithm is used to process the input and produce the output). We also outline a number of problems concerning the datasets used in considered works, and finally introduce the novel concept of malware analysis economics, regarding the study of existing tradeoffs among key metrics, such as analysis accuracy and economical costs

    Reviewer Integration and Performance Measurement for Malware Detection

    Full text link
    We present and evaluate a large-scale malware detection system integrating machine learning with expert reviewers, treating reviewers as a limited labeling resource. We demonstrate that even in small numbers, reviewers can vastly improve the system's ability to keep pace with evolving threats. We conduct our evaluation on a sample of VirusTotal submissions spanning 2.5 years and containing 1.1 million binaries with 778GB of raw feature data. Without reviewer assistance, we achieve 72% detection at a 0.5% false positive rate, performing comparable to the best vendors on VirusTotal. Given a budget of 80 accurate reviews daily, we improve detection to 89% and are able to detect 42% of malicious binaries undetected upon initial submission to VirusTotal. Additionally, we identify a previously unnoticed temporal inconsistency in the labeling of training datasets. We compare the impact of training labels obtained at the same time training data is first seen with training labels obtained months later. We find that using training labels obtained well after samples appear, and thus unavailable in practice for current training data, inflates measured detection by almost 20 percentage points. We release our cluster-based implementation, as well as a list of all hashes in our evaluation and 3% of our entire dataset.Comment: 20 papers, 11 figures, accepted at the 13th Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA 2016

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41
    corecore