2,391 research outputs found

    Efficient Automated Deep Learning for Time Series Forecasting

    Full text link
    Recent years have witnessed tremendously improved efficiency of Automated Machine Learning (AutoML), especially Automated Deep Learning (AutoDL) systems, but recent work focuses on tabular, image, or NLP tasks. So far, little attention has been paid to general AutoDL frameworks for time series forecasting, despite the enormous success in applying different novel architectures to such tasks. In this paper, we propose an efficient approach for the joint optimization of neural architecture and hyperparameters of the entire data processing pipeline for time series forecasting. In contrast to common NAS search spaces, we designed a novel neural architecture search space covering various state-of-the-art architectures, allowing for an efficient macro-search over different DL approaches. To efficiently search in such a large configuration space, we use Bayesian optimization with multi-fidelity optimization. We empirically study several different budget types enabling efficient multi-fidelity optimization on different forecasting datasets. Furthermore, we compared our resulting system, dubbed \system, against several established baselines and show that it significantly outperforms all of them across several datasets

    Assessment of manual dexterity in VR: Towards a fully automated version of the box and blocks test

    Full text link
    © 2019 The authors and IOS Press. This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0). In recent years, the possibility of using serious gaming technology for the automation of clinical procedures for assessment of motor function have captured the interest of the research community. In this paper, a virtual version of the Box and Blocks Test (BBT) for manual dexterity assessment is presented. This game-like system combines the classical BBT mechanics with a play-centric approach to accomplish a fully automated test for assessing hand motor function, making it more accessible and easier to administer. Additionally, some variants of the traditional mechanics are proposed in order to fully exploit the advantages of the chosen technology. This ongoing research aims to provide the clinical practitioners with a customisable, intuitive, and reliable tool for the assessment and rehabilitation of hand motor function

    Assessment of Manual Dexterity in VR: Towards a Fully Automated Version of the Box and Blocks Test

    Get PDF
    Proceeding of The 27th Australian National Health Informatics Conference (HIC 2019), 12-14 August 2019, Melbourne, AustraliaIn recent years, the possibility of using serious gaming technology for the automation of clinical procedures for assessment of motor function have captured the interest of the research community. In this paper, a virtual version of the Box and Blocks Test (BBT) for manual dexterity assessment is presented. This game-like system combines the classical BBT mechanics with a play-centric approach to accomplish a fully automated test for assessing hand motor function, making it more accessible and easier to administer. Additionally, some variants of the traditional mechanics are proposed in order to fully exploit the advantages of the chosen technology. This ongoing research aims to provide the clinical practitioners with a customisable, intuitive, and reliable tool for the assessment and rehabilitation of hand motor function.Work funded by the Spanish Ministry of Economy and Competitiveness (ROBOESPAS project DPI2017-87562-C2-1-R and mobility grant EST2019-013090), and by the RoboCity2030-DIH-CM Madrid Robotics Digital Innovation Hub (S2018/NMT-4331).Publicad

    A Perspective on NASA Ames Air Traffic Management Research

    Get PDF
    This paper describes past and present air-traffic-management research at NASA Ames Research Center. The descriptions emerge from the perspective of a technical manager who supervised the majority of this research for the last four years. Past research contributions built a foundation for calculating accurate flight trajectories to enable efficient airspace management in time. That foundation led to two predominant research activities that continue to this day - one in automatically separating aircraft and the other in optimizing traffic flows. Today s national airspace uses many of the applications resulting from research at Ames. These applications include the nationwide deployment of the Traffic Management Advisor, new procedures enabling continuous descent arrivals, cooperation with industry to permit more direct flights to downstream way-points, a surface management system in use by two cargo carriers, and software to evaluate how well flights conform to national traffic management initiatives. The paper concludes with suggestions for prioritized research in the upcoming years. These priorities include: enabling more first-look operational evaluations, improving conflict detection and resolution for climbing or descending aircraft, and focusing additional attention on the underpinning safety critical items such as a reliable datalink

    Facial Expression Recognition in the Presence of Head Motion

    Get PDF
    corecore